JORC 2012 TABLE 1 GILMORE PROJECT - non resource exploration results

Section 1: Sampling Techniques and Data **JORC Code Explanation** Criteria Commentary Sampling techniques undertaken by previous owners include core sampling of Sampling Nature and quality of sampling (eg cut channels, random chips, techniques or specific specialised industry standard measurement tools NQ2 and/or NQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face appropriate to the minerals under investigation, such as down sampling, Reverse Circulation face sampling with diamond tails (RCD), hole gamma sondes, or handheld XRF instruments, etc). These Aircore with diamond tails (ACD) and mud rotary pre-collared diamond holes examples should not be taken as limiting the broad meaning of (MRD), aircore blade (AC), rotary air blast (RAB) sampling. Include reference to measures taken to ensure sample BP Minerals – RC samples collected by riffle splitter over 2 metre intervals. representivity and the appropriate calibration of any • Goldminco/Straits - RC samples collected by riffle splitter for single metre measurement tools or systems used. samples or sampling spear for composite samples; AC samples collected using riffles splitters or a sampling spear. Half core sampling of NQ2 or HQ diamond core. Paragon - RAB cuttings collected in 3m intervals and cone split to produce 2 • to 5 kg samples. RC/AC cuttings collected in 2m intervals in a sealed cyclone with attached riffle splitter. Samples repeatedly riffle split to 3 to 5 kg in size. Quarter core sampling for NQ3 diamond core. GMA – Half core sampling for HQ3 diamond holes. RAB and RC samples collected at 1m intervals using multi splitter and assayed as 4 metre composite samples. Sandfire Resources – Half core sampling of NQ3, or HQ3 diamond core.For • air core drilling, composite samples were collected using a PVC Spear, Aluminium scoop or as a grab sample with between 1-3.5kg placed into calico bags. Aspects of the determination of mineralisation that are Material to Goldminco/Straits - RC and Aircore samples Boyd crushed to -4mm and the Public Report. pulverized via LM5 to nominal 90% passing -75um. BP Minerals - RC drilling was used to obtain one and two metrer interval In cases where 'industry standard' work has been done this would ٠ be relatively simple (eg 'reverse circulation drilling was used to samples. obtain 1 m samples from which 3 kg was pulverised to produce a Paragon- RC drilling was used to obtain 2m interval samples and for RAB 30 g charge for fire assay'). In other cases more explanation may drilling over 3m intervals. Diamond core samples were variable up to 2m in be required, such as where there is coarse gold that has inherent lenath. sampling problems. Unusual commodities or mineralisation types GMA – Diamond core sample size reduction through Jagues jaw crusher to -(eq submarine nodules) may warrant disclosure of detailed

Criteria	JORC Code Explanation	Commentary
	information.	 10mm and all samples Boyd crushed to -4mm and pulverized via LM5 to nominal 90% passing -75um. RAB and RC drilling not documented. Sandfire Resources – Diamond core sample size reduction through Jaques jaw crusher to -10mm and all samples Boyd crushed to -4mm and pulverized via LM5 to nominal 90% passing -75um.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 BP Minerals – reverse circulation percussion Goldminco/Straits – reverse circulation percussion and aircore blade. Diamond drilling completed using NQ2 and HQ sized coring equipment. Downhole surveying undertaken with a magnetic single or multi shot survey instrument. Paragon – Reverse circulation percussion completed using blade drill bits with conventional cross over in soft ground and a conventional 5 inch down hole hammer and cross over for harder ground. Rotary air blast drilling completed on open holes using a blade bit and drilled to the point of refusal. Selected holes were extended using a calix tungsten bit conventional HQ triple tube core barrel run dry to obtain < 1m of weathered rock. Diamond holes were drilled using NQ3 triple tube and impreg diamond bits. Drill core was orientated using a drop spear where ground conditions were competent orientated core was recorded and converted into real world planes as magnetic strike and dip using "DIPS" software. Holes not down hole surveyed. GMA – Reverse circulation drilling completed with crossover and 140mm blade to the point of refusal, then 114mm face sampling hammer to end of hole. Diamond holes drilled using PQ and then HQ3 triple tube. Diamond core was orientated by marking in situ core with a crayon attached to the end of a spear on a wire line. All holes surveyed by a registered surveyor. Downhole surveys were limited to deeper holes. RAB holes not documented. Sandfire Resources – Diamond drilling completed using NQ3 and HQ3 sized coring equipment. Mud-rotary precollar to a maximum depth of 120m. All collars located using a differential gps receiver. All core orientated using gyroscopic based orientation tool. Downhole surveying undertaken with a magnetic single or multi shot survey instrument. Air core holes were drilled with 3 inch, 3 ½ or 4 inch rods to refusal.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Goldminco/Straits - DDH core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. RC/AC sample quality is assessed by the sampler by visual approximation os sample recovery and if the sample is dry, damp or wet. Paragon/GMA – Core recovery not documented Sandfire Resources – diamond core recovery was logged and recorded. Core recoveries are measured by drillers for every core run.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	• For RC drilling, the drill cyclone is cleaned between rod changes and after each hole to minimise contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade is known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 BP Minerals – detailed graphic and descriptive geological logs suitable for mineral resource estimation. Goldminco/Straits – For RC and Aircore, geological logging was completed in the field. Diamond drill core was logged by hand graphically then entered into an excel spreadsheet template. Paragon/GMA – For RC, RAB geological logging was completed in the field. Detailed graphic and descriptive geological logs for diamond core. Sandfire Resources – Geological logging completed for all holes and representative for style of project. Lithology, alteration and structural characteristics are logged into a digital format.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	All holes have been logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 Sandfire Resources/Goldminco/Staits/GMA– Half core samples cut using automated core saw. Paragon– Quarter core samples, cut using core saw.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• Reverse circulation drilling samples were split by riffle splitters with a sample of between 3 and 5 kilograms submitted to the laboratory.

Criteria	JORC Code Explanation	Commentary
		 Aircore samples were collected by spear of between 3 and 5 kilograms and submitted to the laboratory. Rotary Air Blast holes were collected in 3m intervals and cone split to produce 2 to 5 kg samples
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Sandfire Resources/ Goldminco/Straits/GMA – diamond core sample size reduction through Jaques jaw crusher to -10mm and all diamond,RC, Air core and RAB samples Boyd crushed to -4mm and pulverized via LM5 to nominal 90% passing -75um. Paragon - As above, except crushed to within -5mm before pulverizing. The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Reverse circulation drill samples greater than 4 kilograms were sub split and half the sample was pulverized. Sandfire Resources/Goldminco/Straits- 1:20 grind quality checks completed for 90% passing -75 micron. Paragon/GMA – Not documented.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 BP Minerals – Field duplicates taken at the rate of 1:17. Goldminco/Straits – Repeats and second splits for sampling undertaken by Goldminco were analysed every twenty or so samples. Paragon/GMA- Not documented. Sandfire Resources – quarter core field duplicates at the rate 1:20.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 BP Minerals – Au by PM3, Ag by ICP and Sb by AAS. No relevant information on the analytical laboratories commissioned by BP Minerals was evident in the material provided. Goldminco/Straits – Samples submitted to SGS Laboratories. Gold analysis by fire assay with AAS finish (FAA505). 3 and 4 acid digest with multi-element ICPAES analysis. For over range results techniques AAS22D and AAS23Q (atomic absoRCtion spectrometer finish) were used. Paragon –Samples analysed by Aqua Regia acid digest and AAS determination. Gold analysis by fire assay and Ag, Cu by perchloric acid digest.

Criteria	JORC Code Explanation	Commentary
		 GMA – Samples submitted for gold analysis by 50gram charge fire assay with AAS finish. Base and trace elements analysed using hot nitric hydrochloric perchloric acid digest and atomic absoRCtion spectrometry. Sandfire Resources – 4 acid digest with multi-element ICPOES or ICPMS analysis. Gold analysis by 30gram fire assay charge with ICPAES/MS finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 BP Minerals – gold standards inserted at the rate of 1:20. Goldminco/Straits – A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Certified standards were inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Paragon – Not documented. GMA – assay of drillhole samples were checked using a combination of (a) submission of blind standards and blanks and (b) comparison of results of the composited samples with the average result of 4. 1m sub samples resubmitted for anomalous results. Sandfire Resources – industry standard standard reference material submitted on regular basis with routine samples at a minimum rate of 5% frequency.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 The drill core from each of the projects this document pertains to were checked by the Competent Person at both the previous Goldminco/Straits Resources core yard facility in Orange and at the Xavierling core yard facility in West Wyalong.
	The use of twinned holes.	There are no known twinned holes in this report.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Historical reports are available from the Mines Department which show detailed drill logs and raw assay reports sheets. Goldminco/Straits – primary RC and Aircore data captured digitally in the field and imported into a Maxwells Geoscience Datashed database. Diamond core data catured into excel templates and imported into a a Maxwells Geoscience

Criteria	JORC Code Explanation	Commentary
		 Datashed database. Paragon/GMA – primary data entered on logging sheets and raw assay report sheets. Sandfire Resources – primary data captured on field tough books using Logchief software with routine validation before imprting to a central database.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill hole collars, surface workings and other locational data used in the Mineral Resource estimation were surveyed using industry standard practice methods at the time the work was undertaken. Goldminco/Straits – all drill collars located using a handheld GPS system with sub 3m accuracy. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot and gyroscopic downhole survey instruments. Paragon – Not documented. GMA – all drill collars were surveyed by Temora Mine Survey Department before and after drilling. Only selected deeper holes were surveyed for downhole survey. Sandfire Resources – all drill collars located using a DGPS system with sub 1m accuracy. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot and gyroscopic downhole survey.
	Specification of the grid system used.	Coordinate and azimuth are reported in MGA94 Zone 55.
	Quality and adequacy of topographic control.	Topographic control established from DGPS readings.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drillholes spaced to define geological targets to discover extensions to mineralisation.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No resource classification is applied to the data in this report.

Criteria	JORC Code Explanation	Commentary
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Drillholes designed to intersect targeted geology at a high angle to predominantly near vertical systems.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• The majority of the drilling was oriented peRCendicular to the general strike of the targeted geology and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 BP Minerals – not documented. Goldminco/Straits - Sample storage was as follows: Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps. Paragon/GMA – not documented. Sandfire Resources – samples stored on site and transported to laboratory by Sandfire employees or a licensed transport company in sealed bulka bags. The laboratory receipts received samples against the sample dispatch documents and issues a reconciliation report for easch dispatch. Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews of the sampling techniques and data have been completed.

Section 2: Reporting of Exploration Results

Criteria		Commentary				
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Gilmore Project is located between Temora and West Wyalong in central-west NSW, and covers an area of approximately 600 km2. The topography is flat and access is by major sealed highways and roads, unsealed shire roads and station tracks. The Gilmore Project comprises five exploration licenses (EL5864, 6845, 8397, 8292 & 9738), all held and managed by LinQ. EL5864 has a royalty agreement of 2% NSR (Net Smelter Return) to Alcrest Royalties Australia Pty Ltd, payable upon the commencement of mining which partly covers The Dam prospect. EL6845 has a 12.5% Net Profits Interest for that part which covers the historic EL2151. 				
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Since the discovery of the Gidginbung high sulphidation deposit in 1983 by Seltrust, numerous companies have continued to explore over the Gidginbung Volcanics for poRChyry related copper-gold and epithermal system. The southern portion of the project was held and explored by the owners of the Gidginbung Mine Operation, Paragon/Gold Mines of Australia/Mt Lyell Mining Ltd with several joint venture partners including CRA Exploration Pty Ltd and Cyprus Amax Australia CoRCoration through to 1999 when Mt Lyell Mining Ltd was placed into voluntary administration. The Dam poRChyry copper-gold deposit was discovered during this time. The central part of the project was initially granted to Lachlan Resources as EL2151 in 1984. Lachlan entered into various joint ventures with partners including CRA Exploration Pty Ltd and Geopeko before EL2151 was acquired by Gold Mines of Australia in 1993. Gold Mines of Australia sole funded exploration through to 1996 resulting in the discovery of the Mandamah deposit before joint venturing EL2151 to Placer Exploration Ltd. After discovering the Culingerai copper-gold deposit, Placer withdrew from the joint venture in 1998. The northern portion of the project was initially explored by Le Nickel in the 				

		mid to late 1970's resulting in the discovery of the Yiddah poRChyry copper- gold deposit. EL1563 was subsequently granted to Base Mines Ltd who entered into joint ventures with Endeavor Resources Ltd, Seltrust Gold Pty Ltd through to 1990. Geopeko followed by Cyprus Amax Australia CoRCoration entered into a joint ventures with Paragon for EL1563 from 1990 through to 1999.
		Upon Mt Lyell Mining Ltd entering voluntary administration, Australian Goldfields Exploration Pty Ltd acquired the majority of the current project in January 2000 which were subsequently vendored to Templar Resources in 2003. In August 2007 a number of licences were consolidated to form EL6845. Additionally, the previous Gidginbung Ming licence was granted to Newcrest as EL5864 in 2001. In 2008, EL5864 was transferred to Templar Resources, representing the first time the entire project was held by a single entity.
		The "Temora" project was subsequently sold to Sandfire Resources. Iin 2016 Sandfire Resources sold the project to Xavierlinq Pty Ltd/LinQ in 2023. In 2024 LinQ applied for additional ground around Gidginbung and in January 2025 was granted EL 9738, in order to form what is now known as the Gilmore Project.
Geology	Deposit type, geological setting and style of mineralisation.	 The Gilmore Project is principally hosted within the late Ordovician aged Gidginbung Volcanics. The Gidginbung Volcanics, and to a lesser extent the adjacent Siluro-Devonian Yiddah Formation sediments, host numerous Au and Cu occurrences associated with the Gilmore Fault Zone. Mineralisation styles can be broadly grouped into three main types: High sulphidation epithermal Au-Ag, eg. Gidginbung PoRChyry Cu-Au-Mo, eg. Mandamah, Dam, Yiddah Mesothermal vein Au, eg. Reefton, Barmedman
		PoRChyry Cu-Au and epithermal Au deposits are hosted in the Gidginbung Volcanics, and are related to magmatic fluids associated with monzonitic to dioritic intrusives. Mesothermal reef Au systems occur mainly in the Siluro-Devonian Yiddah Formation adjacent to faults, and are of lesser interest, as they all appear too small to support a significant gold mining operation.

			However, significant remobilisation of mineralisation at poRChyry prospects adjacent to Devonian faults (eg. Cullingerai, The Dam and Yiddah) locally adds to the economic grade of the deposit. Devonian deformation also significantly improves the grade of poRChyry deposits at the nearby Cowal Au Mine and the Marsden Cu-Au-Mo prospect.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	Refer to table 1 of this accompanying document.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	•	Gidginbung South/Fields/MagH-1/Reefton – length weighted intersections reported at greater than 0.1g/t gold. Intercepts may include up to a maximum of 10m of consecutive dilution. Gidginbung North – length weighted intersections reported at greater than 0.1% Copper equivalent. Intercepts may include up to a maximum of 10m of consecutive dilution. Dam/Donnington/Monza/Kangaroo Hill – length weighted intersections reported at greater than 0.2% or 0.1% Copper equivalent. Intercepts may include up to a maximum of 10m of consecutive dilution.
	Where aggregate intercepts incoRCorate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	Reported intersections based on regular sample intervals, nominally 1m. Where assay intervals occur less than 1m, length weighting has been utilised.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	Copper equivalents have been calculated using the formula Cu Equiv (%) = $((Cu (g/t)) + (Au (g/t)*67.515/0.0085))/10000)$. The prices used were US\$8500/t copper and US\$2100/oz gold.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	•	Downhole intercepts of minmeralisation reported in this document are from drillholes orientated at a high angle to the predicted geological features. All widths reported are downhole intervals.

widths and intercept	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	•	The geometry of the mineralisation, relative to the drillhole, is inteRCreted at this stage.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	•	All intersections reported are downhole intervals.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Diagrams are included in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	Other exploration data collected is not considered as material to this document at this stage.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological inteRCretations and future drilling areas, provided this information is not commercially sensitive.	•	Continue along strike testing of the Dam and Gidginbung resources. Continue testing alongstrike and dip continuity of mineralisation at both Donnington and Monza towards resource status. Test for the Gidginbung North blind poRChyry system. Continue to test for extensions down dip and along strike of the epithermal gold mineralisation at Fields and identify potential causative structures. Continue to test for a hypogene source and extensions to the intersected hydromoRChic gold mineralisation at MagH-1. Continue with district exploration incoRCorating current understanding of geological, structural and mineralisation controls at the existing Gilmore Prospects.

Hole_ID	Project	Hole_Type	Max_Depth	East	North	RL	Dip	Grid_Azimuth	Company	Year
TTDRC007	Dam	RC	301	543609.3	6201089.61	270.155	-60.626	238	Straits Resources	2011
TTDRCD010	Dam	RCD	384.8	543675.4	6201116.658	271.192	-65	240	Straits Resources	2012
TMMRD006	Donnington	MRD	459	534602.4	6218740	234.452	-60	90	Sandfire Resources	2017
TMMRD010	Donnington	MRD	450	534597.9	6218841	234.516	-60.5	90	Sandfire Resources	2017
TMMRD011	Donnington	MRD	596	534632.7	6218637	234.427	-59.72	90	Sandfire Resources	2017
TMMRD012	Donnington	MRD	609	534662.1	6218103	234.645	-60.94	90	Sandfire Resources	2017
TMMRD014	Donnington	MRD	771	534676.3	6218581	234.313	-74.99	90	Sandfire Resources	2017
TMMRD015	Donnington	MRD	594	534494.5	6218740	234.559	-61.21	90	Sandfire Resources	2017
TMMRD016	Donnington	MRD	508	534494.5	6218656	234.19	-60	102	Sandfire Resources	2017
TMMRD017	Donnington	DDH	822	534494.5	6218617	233.63	-60.96	270	Sandfire Resources	2017
TMMRD019	Donnington	DDH	675	534494.5	6218719	233.602	-60	270	Sandfire Resources	2018
TMMRD024	Donnington	DDH	549	534494.5	6218285	235	-61.14	270	Sandfire Resources	2018
TMMRD046	Donnington	DDH	924	534494.5	6218482	236.247	-69.85	89	Sandfire Resources	2021
TMRCD001	Gidginbung North	RCD	486	534494.5	6203110	265	-60	225	Sandfire Resources	2017
TMRCD004	Gidginbung North	RCD	1039	534494.5	6202416	286	-60	225	Sandfire Resources	2017
TP161	Gidginbung South	RCD	465	534494.5	6200048.337	284.118	-90	80.4	BP Minerals/Straits Resources	1984/2012
TMDD042	Monza	DDH	483	534494.5	6211903	239.346	-58.98	249	Sandfire Resources	2021
TMDD042 TMDD043	Monza	DDH	651	534494.5	6212209	239.340	-64.55	243	Sandfire Resources	2021
TMMRD032	Monza	DDH	363	534494.5	62112203	237.284	-60.26	63	Sandfire Resources	2021
TMMRD032	Monza	DDH	513	534494.5	6211945	237.162	-60.72	249	Sandfire Resources	2019
TMMRD039	Monza	DDH	627	534494.5	6211985	237.057	-60.14	248	Sandfire Resources	2010
TMZD001	Monza	ACD	423.8	534494.5	6211984.38	250	-60	90	Goldminco CoRC	2020
TMZD002	Monza	ACD	482.2	534494.5	6211984.384	250	-60	87	Goldminco CoRC	2007
TMZD003	Monza	ACD	501.8	534494.5	6211784.384	250	-60	87	Goldminco CoRC	2007
TMZD004	Monza	ACD	478.9	534494.5	6211784.384	250	-60	87	Goldminco CoRC	2007
TMZD005	Monza	ACD	465.7	534494.5	6212084.385	250	-60	87	Goldminco CoRC	2007
TMZD006	Monza	ACD	417.79	534494.5	6211984.382	250	-60	272	Goldminco CoRC	2007
TMMRD038	Fields	DDH	495	534494.5	6205512	250	-60.27	315	Sandfire Resources	2020
TMMRD040	Fields	DDH	222	534494.5	6205620	248.624	-59.97	140	Sandfire Resources	2020
TMDD041	Fields	DDH	315	534494.5	6205701	250.33	-60	110	Sandfire Resources	2021

TMDD044	Fields	DDH	417	534494.5	6205652	250.628	-60	150	Sandfire Resources	2021
TMDD045	Fields	DDH	414	534494.5	6205790	250.919	-60	150	Sandfire Resources	2021
TMDD047	Fields	DDH	345	534494.5	6205833	247.862	-60	150	Sandfire Resources	2022
TMDD048	Fields	DDH	333	534494.5	6205482	248.607	-61.32	123	Sandfire Resources	2022
TMDD049	Fields	DDH	358	534494.5	6205886	247.524	-59.02	150	Sandfire Resources	2022
TMDD050	Fields	DDH	336	534494.5	6205934	247.662	-60	150	Sandfire Resources	2022
TMDD052	Fields	DDH	456	534494.5	6205845	247.67	-60.97	219	Sandfire Resources	2022
DD94GB85	MagH-1	DDH	246	534494.5	6203475.4	260.2	-55	21.7	GMA	1994
DD94GB86	MagH-1	DDH	61	534494.5	6203604.94	258.6	-60	201.7	GMA	1994
RC94GB63	MagH-1	RC	93	534494.5	6203745.44	255.1	-60	191.7	GMA	1994
RC94GB65	MagH-1	RC	180	534494.5	6203655.64	255.2	-60	191.7	GMA	1994
RC94GB66	MagH-1	RC	180	534494.5	6203566.06	255.4	-60	191.7	GMA	1994
RC94GB67	MagH-1	RC	180	534494.5	6203730.53	255.2	-60	191.7	GMA	1994
RC94GB83	MagH-1	RC	180	534494.5	6203476.29	260.2	-60	201.7	GMA	1994
RC94GB84	MagH-1	RC	180	534494.5	6203558.36	259.4	-60	201.7	GMA	1994
TAC278	MagH-1	AC	90	534494.5	6203083.05	267	-90	0	Straits Resources	2011
TD078	MagH-1	DDH	90.42	534494.5	6203644.34	256.8	-60	204	Paragon	1992
TD079	MagH-1	DDH	90.25	534494.5	6203645.34	257	-60	204	Paragon	1992
TD088	MagH-1	DDH	63	534494.5	6203620.34	258.39	-60	201	Paragon	1992
TMDD051	MagH-1	DDH	114	534494.5	6203824	255.819	-60	135	Sandfire Resources	2022
TMDD053	MagH-1	DDH	292	534494.5	6203818	255.927	-59.78	137	Sandfire Resources	2022
TMDD054	MagH-1	DDH	294	534494.5	6203818	258.348	-60.82	191	Sandfire Resources	2022
TMDD056	MagH-1	DDH	327	534494.5	6203664	259.048	-60.3	180	Sandfire Resources	2022
TP308	MagH-1	RC	46	534494.5	6203322.34	260	-90	0	Paragon	1987
TP309	MagH-1	RC	52	534494.5	6203657.34	260	-90	0	Paragon	1987
TP310	MagH-1	RC	52	534494.5	6203537.34	260	-90	0	Paragon	1987
TP311	MagH-1	RC	64	534494.5	6203412.34	260	-90	0	Paragon	1987
TP324	MagH-1	RC	64	534494.5	6203782.34	260	-90	0	Paragon	1987
TP553	MagH-1	RC	70	534494.5	6203644.34	256.8	-60	204	Paragon	1991
TP554	MagH-1	RC	80	534494.5	6203578.34	259.1	-60	24	Paragon	1991
TP555	MagH-1	RC	78	534494.5	6203645.34	257	-60	24	Paragon	1991
TP557	MagH-1	RC	67	534494.5	6203605.34	257.6	-60	204	Paragon	1991

TP602	MagH-1	RC	60	534494.5	6203589.34	259.23	-60	204	Paragon	1991
TP603	MagH-1	RC	60	534494.5	6203610.34	259.23	-60	204	Paragon	1991
TP604	MagH-1	RC	60 60	534494.5	6203599.34	259.24	-60	204	Paragon	1991
TP604		RC	60 60	534494.5	6203605.34	258.82	-60	204		1991
	MagH-1						-60 -60	204	Paragon	
TP606	MagH-1	RC RC	58.5	534494.5	6203597.34	258.82			Paragon	1991
TP607	MagH-1		60	534494.5	6203579.34	259.09	-60	204	Paragon	1991
TP608	MagH-1	RC	60	534494.5	6203558.34	259.48	-60	204	Paragon	1991
TP609	MagH-1	RC	60	534494.5	6203624.34	257.93	-60	204	Paragon	1991
TP610	MagH-1	RC	60	534494.5	6203641.34	257.61	-60	204	Paragon	1991
TP622	MagH-1	RC	60	534494.5	6203534.34	259.75	-60	204	Paragon	1991
TP623	MagH-1	RC	60	534494.5	6203580.34	259.04	-60	67	Paragon	1991
TP624	MagH-1	RC	60	534494.5	6203620.34	258.53	-60	247	Paragon	1991
TP625	MagH-1	RC	60	534494.5	6203663.34	257.24	-60	204	Paragon	1991
TP626	MagH-1	RC	62	534494.5	6203703.34	256.79	-60	204	Paragon	1991
TP627	MagH-1	RC	63	534494.5	6203722.34	256.61	-60	204	Paragon	1991
TP646	MagH-1	AC	60	534494.5	6203570.34	259.29	-60	201	Paragon	1992
TP649	MagH-1	AC	60	534494.5	6203584.34	259.07	-60	201	Paragon	1992
TP650	MagH-1	AC	72	534494.5	6203621.34	258.32	-60	201	Paragon	1992
TP651	MagH-1	AC	72	534494.5	6203602.34	258.37	-60	201	Paragon	1992
TP652	MagH-1	AC	66	534494.5	6203673.34	257.03	-60	201	Paragon	1992
TP653	MagH-1	RC	72	534494.5	6203736.34	256.38	-90	0	Paragon	1992
TP661	MagH-1	RC	30	534494.5	6203620.34	258.39	-60	201	Paragon	1992
TR246	MagH-1	RAB	36	534494.5	6203735.34	258	-90	0	Paragon	1992
TR247	MagH-1	RAB	48	534494.5	6203715.34	258	-90	0	Paragon	1992
TR248	MagH-1	RAB	19	534494.5	6203691.34	258	-90	0	Paragon	1992
TR249	MagH-1	RAB	48	534494.5	6203670.34	258	-90	0	Paragon	1992
TR275	MagH-1	RAB	51	534494.5	6203647.34	260	-90	0	Paragon	1992
TR276	MagH-1	RAB	45	534494.5	6203626.34	260	-90	0	Paragon	1992
TR290	MagH-1	RAB	30	534494.5	6203682.34	258	-90	0	Paragon	1992
TR291	MagH-1	RAB	18	534494.5	6203733.34	258	-90	0	Paragon	1992
TR292	MagH-1	RAB	30	534494.5	6203785.34	258	-90	0	Paragon	1992
TR442	MagH-1	RAB	30	534494.5	6203127.34	270	-90	0	Paragon	1992
	magiri	10.0		00.10110	020012/101	210		•	i alagon	1002

TR445	MagH-1	RAB	60	534494.5	6203151.34	260.72	-60	65	GMA	1994
TR446	MagH-1	RAB	60	534494.5	6203127.34	260.85	-60	69	GMA	1994
TR447	MagH-1	RAB	66	534494.5	6203102.34	261.02	-60	65	GMA	1994
TR448	MagH-1	RAB	66	534494.5	6203079.34	261.06	-60	67	GMA	1994
TR449	MagH-1	RAB	66	534494.5	6203053.34	261.2	-60	67	GMA	1994
TR450	MagH-1	RAB	66	534494.5	6203029.34	261.38	-60	63	GMA	1994
TR451	MagH-1	RAB	60	534494.5	6203162.34	262.48	-60	69	GMA	1994
TR452	MagH-1	RAB	60	534494.5	6203140.34	262.63	-60	65	GMA	1994
TR453	MagH-1	RAB	60	534494.5	6203109.34	262.6	-60	58	GMA	1994
TR454	MagH-1	RAB	60	534494.5	6203081.34	262.71	-60	67	GMA	1994
TR455	MagH-1	RAB	60	534494.5	6203055.34	262.64	-60	68	GMA	1994
TR456	MagH-1	RAB	60	534494.5	6203388.34	260.05	-60	64	GMA	1994
TR457	MagH-1	RAB	60	534494.5	6203363.34	260.48	-60	65	GMA	1994
TR458	MagH-1	RAB	60	534494.5	6203338.34	261.06	-60	71	GMA	1994
TR459	MagH-1	RAB	60	534494.5	6203313.34	261.66	-60	64	GMA	1994
TR460	MagH-1	RAB	60	534494.5	6203289.34	262.35	-60	64	GMA	1994
TR461	MagH-1	RAB	60	534494.5	6203266.34	263.04	-60	63	GMA	1994
TR462	MagH-1	RAB	60	534494.5	6203241.34	263.67	-60	65	GMA	1994
TR463	MagH-1	RAB	60	534494.5	6203216.34	264.21	-60	67	GMA	1994
TR464	MagH-1	RAB	60	534494.5	6203192.34	264.61	-60	67	GMA	1994
TR465	MagH-1	RAB	60	534494.5	6203168.34	264.85	-60	67	GMA	1994
TR466	MagH-1	RAB	60	534494.5	6203143.34	264.96	-60	67	GMA	1994
TR467	MagH-1	RAB	60	534494.5	6203119.34	265.22	-60	67	GMA	1994
TR468	MagH-1	RAB	60	534494.5	6203222.34	265.64	-60	247	GMA	1994
TR469	MagH-1	RAB	60	534494.5	6203246.34	264.71	-60	251	GMA	1994
TR470	MagH-1	RAB	60	534494.5	6203269.34	264.02	-60	249	GMA	1994
TR471	MagH-1	RAB	60	534494.5	6203292.34	263.22	-60	251	GMA	1994
TR472	MagH-1	RAB	60	534494.5	6203316.34	262.49	-60	249	GMA	1994
TR473	MagH-1	RAB	60	534494.5	6203339.34	261.85	-60	251	GMA	1994
TR474	MagH-1	RAB	57.5	534494.5	6203363.34	261.1	-60	249	GMA	1994
TR475	MagH-1	RAB	64.5	534494.5	6203386.34	260.58	-60	249	GMA	1994
TR476	MagH-1	RAB	78	534494.5	6203409.34	260.17	-60	247	GMA	1994

TR477	MagH-1	RAB	66	534494.5	6203432.34	259.84	-60	250	GMA	1994
TR478	MagH-1	RAB	72	534494.5	6203480.34	260.34	-60	66	GMA	1994
TR479	MagH-1	RAB	60	534494.5	6203457.34	260.6	-60	65	GMA	1994
TR480	MagH-1	RAB	60	534494.5	6203434.34	260.88	-60	67	GMA	1994
TR481	MagH-1	RAB	60	534494.5	6203410.34	261.14	-60	69	GMA	1994
TR482	MagH-1	RAB	60	534494.5	6203387.34	261.48	-60	67	GMA	1994
TR483	MagH-1	RAB	60	534494.5	6203363.34	261.92	-60	67	GMA	1994
TR484	MagH-1	RAB	60	534494.5	6203340.34	262.61	-60	67	GMA	1994
TR485	MagH-1	RAB	60	534494.5	6203317.34	263.15	-60	67	GMA	1994
TR486	MagH-1	RAB	60	534494.5	6203294.34	263.89	-60	67	GMA	1994
TR487	MagH-1	RAB	66	534494.5	6203270.34	264.42	-60	67	GMA	1994
TR488	MagH-1	RAB	60	534494.5	6203247.34	265.14	-60	67	GMA	1994
TR489	MagH-1	RAB	60	534494.5	6203304.34	263.88	-60	247	GMA	1994
TR490	MagH-1	RAB	60	534494.5	6203327.34	263.24	-60	247	GMA	1994
TR491	MagH-1	RAB	60	534494.5	6203350.34	262.72	-60	247	GMA	1994
TR492	MagH-1	RAB	60	534494.5	6203374.34	262.37	-60	247	GMA	1994
TR493	MagH-1	RAB	60	534494.5	6203397.34	260	-60	247	GMA	1994
TR494	MagH-1	RAB	78	534494.5	6203420.34	261.66	58.5	248.5	GMA	1994
TR495	MagH-1	RAB	78	534494.5	6203443.34	261.3	-60	247	GMA	1994
TR496	MagH-1	RAB	66	534494.5	6203467.34	260.99	-60	247	GMA	1994
TR497	MagH-1	RAB	60	534494.5	6203490.34	260.69	-60	248	GMA	1994
TR498	MagH-1	RAB	60	534494.5	6203514.34	260.5	-60	248	GMA	1994
TR499	MagH-1	RAB	60	534494.5	6203537.34	260.33	-60	247	GMA	1994
TR500	MagH-1	RAB	60	534494.5	6203566.34	259.65	-60	67	GMA	1994
TR501	MagH-1	RAB	59	534494.5	6203542.34	260.11	-60	67	GMA	1994
TR502	MagH-1	RAB	61	534494.5	6203519.34	260.32	-60	67	GMA	1994
TR503	MagH-1	RAB	60	534494.5	6203496.34	260.69	-60	67	GMA	1994
TR504	MagH-1	RAB	60	534494.5	6203472.34	261.17	-60	67	GMA	1994
TR505	MagH-1	RAB	78	534494.5	6203449.34	261.55	-56.5	63.5	GMA	1994
TR506	MagH-1	RAB	66	534494.5	6203425.34	261.99	-60	67	GMA	1994
TR507	MagH-1	RAB	60	534494.5	6203402.34	262.29	-60	67	GMA	1994
TR508	MagH-1	RAB	60	534494.5	6203379.34	262.63	-60	67	GMA	1994

TR509	MagH-1	RAB	72	534494.5	6203431.34	262.05	-60	247	GMA	1994
TR510	MagH-1	RAB	57	534494.5	6203454.34	261.51	-60	247	GMA	1994
TR511	MagH-1	RAB	66	534494.5	6203478.34	261.07	-60	247	GMA	1994
TR512	MagH-1	RAB	60	534494.5	6203501.34	260.67	-60	247	GMA	1994
TR513	MagH-1	RAB	54	534494.5	6203524.34	260.25	-60	247	GMA	1994
TR514	MagH-1	RAB	52	534494.5	6203548.34	259.87	-60	247	GMA	1994
TR515	MagH-1	RAB	54	534494.5	6203613.34	258.8	-60	247	GMA	1994
TR516	MagH-1	RAB	60	534494.5	6203530.34	260.21	-60	247	GMA	1994
TR517	MagH-1	RAB	55	534494.5	6203553.34	259.7	-60	247	GMA	1994
TR518	MagH-1	RAB	54	534494.5	6203576.34	259.29	-60	247	GMA	1994
TR519	MagH-1	RAB	60	534494.5	6203623.34	258.5	-60	247	GMA	1994
TR520	MagH-1	RAB	60	534494.5	6203372.34	260.59	-60	247	GMA	1994
TR521	MagH-1	RAB	62	534494.5	6203395.34	260.65	-60	247	GMA	1994
TR522	MagH-1	RAB	60	534494.5	6203419.34	260.47	-60	247	GMA	1994
TR523	MagH-1	RAB	60	534494.5	6203442.34	260.48	-60	247	GMA	1994
TR524	MagH-1	RAB	66	534494.5	6203465.34	260.27	-60	247	GMA	1994
TR525	MagH-1	RAB	60	534494.5	6203489.34	260.14	-60	247	GMA	1994
TR526	MagH-1	RAB	53	534494.5	6203512.34	260.05	-60	247	GMA	1994
TR527	MagH-1	RAB	54	534494.5	6203662.34	257.75	-60	247	GMA	1994
TR528	MagH-1	RAB	57	534494.5	6203690.34	256.63	-60	247	GMA	1994
TR529	MagH-1	RAB	66	534494.5	6203573.34	258.72	-58.5	248.5	GMA	1994
TR530	MagH-1	RAB	60	534494.5	6203480.34	257.85	-60	247	GMA	1994
TR531	MagH-1	RAB	64	534494.5	6203504.34	259.94	-60	247	GMA	1994
TR532	MagH-1	RAB	66	534494.5	6203527.34	257.9	-60	247	GMA	1994
TR533	MagH-1	RAB	72	534494.5	6203551.34	257.89	-60	247	GMA	1994
TR534	MagH-1	RAB	72	534494.5	6203574.34	257.91	-60	247	GMA	1994
TR535	MagH-1	RAB	66	534494.5	6203597.34	257.87	-60	247	GMA	1994
TR536	MagH-1	RAB	66	534494.5	6203620.34	257.74	-60	247	GMA	1994
TR537	MagH-1	RAB	70	534494.5	6203644.34	257.45	-60	247	GMA	1994
TR538	MagH-1	RAB	63	534494.5	6203700.34	256.56	-60	247	GMA	1994
TR539	MagH-1	RAB	60	534494.5	6203645.34	256.98	-60	247	GMA	1994
TR540	MagH-1	RAB	66	534494.5	6203668.34	257.04	-60	247	GMA	1994

TR541	MagH-1	RAB	63	534494.5	6203715.34	256.79	-60	247	GMA	1994
TR542	MagH-1	RAB	72	534494.5	6203655.34	256.09	-60	247	GMA	1994
TR543	MagH-1	RAB	60	534494.5	6203678.34	256.07	-60	247	GMA	1994
TR544	MagH-1	RAB	60	534494.5	6203701.34	256.07	-60	247	GMA	1994
TR545	MagH-1	RAB	66	534494.5	6203726.34	256.26	-60	247	GMA	1994
TR546	MagH-1	RAB	60	534494.5	6203724.34	256.25	-60	67	GMA	1994
TR547	MagH-1	RAB	60	534494.5	6203715.34	260	-60	64.5	GMA	1994
TR548	MagH-1	RAB	60	534494.5	6203305.34	260.64	-60	67	GMA	1994
TR549	MagH-1	RAB	66	534494.5	6203282.34	261.03	-60	67	GMA	1994
TR550	MagH-1	RAB	66	534494.5	6203259.34	261.54	-60	67	GMA	1994
TR551	MagH-1	RAB	60	534494.5	6203235.34	261.85	-60	247	GMA	1994
TR552	MagH-1	RAB	58	534494.5	6203770.34	255.72	-60	67	GMA	1994
TR553	MagH-1	RAB	59	534494.5	6203794.34	255.35	-60	247	GMA	1994
TR554	MagH-1	RAB	60	534494.5	6203781.34	255.47	-60	247	GMA	1994
1563RC1K	Kangaroo Hill	RC	117	534494.5	6225470.33	230	-60	254	BP Minerals	1984
1563RC2K	Kangaroo Hill	RC	105	534494.5	6225658.33	230	-60	245	BP Minerals	1984
1563RC3K	Kangaroo Hill	RC	118	534494.5	6225684.33	230	-60	250	BP Minerals	1984
1563RC4K	Kangaroo Hill	RC	116	534494.5	6225447.33	230	-60	248	BP Minerals	1984
1563RC5K	Kangaroo Hill	RC	69	534494.5	6225409.33	230	-60	258	BP Minerals	1984
1563RC6K	Kangaroo Hill	RC	111	534494.5	6225415.33	230	-60	251	BP Minerals	1984
1563RC7K	Kangaroo Hill	RC	154	534494.5	6225732.33	230	-60	251	BP Minerals	1984
1563RC8K	Kangaroo Hill	RC	75	534494.5	6225221.33	230	-60	251	Paragon	1987
1563RC9K	Kangaroo Hill	RC	63	534494.5	6225233.33	230	-60	251	Paragon	1987
1563RC10K	Kangaroo Hill	RC	63	534494.5	6225246.33	230	-60	240	Paragon	1987
1563RC81K	Kangaroo Hill	RC	100	534494.5	6225069.33	230	-60	248	Paragon	1988
1563RC82K	Kangaroo Hill	RC	100	534494.5	6225048.33	230	-60	248	Paragon	1988
1563RC83K	Kangaroo Hill	RC	104	534494.5	6224942.33	230	-60	248	Paragon	1988
1563RC84K	Kangaroo Hill	RC	100	534494.5	6224921.33	230	-60	248	Paragon	1988
1563RC85K	Kangaroo Hill	RC	100	534494.5	6224883.33	230	-60	248	Paragon	1988
1563RC86K	Kangaroo Hill	RC	100	534494.5	6224862.33	230	-60	248	Paragon	1988
1563RC87K	Kangaroo Hill	RC	74	534494.5	6224841.33	230	-60	248	Paragon	1988
1563RC88K	Kangaroo Hill	RC	100	534494.5	6224820.33	230	-60	248	Paragon	1988

1563RC89K	Kangaroo Hill	RC	100	534494.5	6224749.33	230	-60	248	Paragon	1988
1563RC90K	Kangaroo Hill	RC	100	534494.5	6224658.33	230	-60	248	Paragon	1988
TKHD001	Kangaroo Hill	DDH	357.7	534494.5	6225679.38	235	-60	245	Goldminco CoRC	2010
TKHD002	Kangaroo Hill	ACD	374.9	534494.5	6225118.37	230	-65	245	Goldminco CoRC	2010
95RRRC01	REEFTON	RC	60	534494.5	6210629.34	259.42	-60	270	GMA	1995
95RRRC02	REEFTON	RC	60	534494.5	6210636.34	258.79	-60	270	GMA	1995
95RRRC03	REEFTON	RC	60	534494.5	6210644.34	257.53	-60	270	GMA	1995
95RRRC04	REEFTON	RC	60	534494.5	6210651.34	256.37	-60	270	GMA	1995
95RRRC05	REEFTON	RC	60	534494.5	6210421.34	260	-60	270	GMA	1995
95RRRC06	REEFTON	RC	60	534494.5	6210633.34	255.57	-60	270	GMA	1995
95RRRC07	REEFTON	RC	60	534494.5	6210133.34	265.05	-60	270	GMA	1995
95RRRC08	REEFTON	RC	84	534494.5	6210235.34	263.31	-60	270	GMA	1995
95RRRC09	REEFTON	RC	60	534494.5	6210243.34	262.07	-60	270	GMA	1995
95RRRC10	REEFTON	RC	60	534494.5	6210250.34	261.31	-60	270	GMA	1995
95RRRC11	REEFTON	RC	60	534494.5	6210257.34	260.67	-60	270	GMA	1995
95RRRC12	REEFTON	RC	60	534494.5	6210031.34	266.44	-60	270	GMA	1995
95RRRC13	REEFTON	RC	102	534494.5	6210039.34	266.47	-60	270	GMA	1995
95RRRC14	REEFTON	RC	60	534494.5	6210046.34	266.31	-60	270	GMA	1995
95RRRC15	REEFTON	RC	60	534494.5	6210053.34	264.79	-60	270	GMA	1995
95RRRC16	REEFTON	RC	102	534494.5	6209938.34	268.53	-60	270	GMA	1995
95RRRC17	REEFTON	RC	84	534494.5	6209948.34	266.94	-60	270	GMA	1995
95RRRC18	REEFTON	RC	60	534494.5	6209955.34	265.45	-60	270	GMA	1995
95RRRC19	REEFTON	RC	60	534494.5	6209842.34	266.88	-60	270	GMA	1995
95RRRC20	REEFTON	RC	60	534494.5	6209849.34	266.7	-60	270	GMA	1995
95RRRC21	REEFTON	RC	102	534494.5	6210523.34	260.44	-60	270	GMA	1995
95RRRC22	REEFTON	RC	60	534494.5	6210531.34	259.87	-60	270	GMA	1995
95RRRC23	REEFTON	RC	60	534494.5	6210538.34	259.05	-60	270	GMA	1995
95RRRC24	REEFTON	RC	60	534494.5	6210545.34	258.23	-60	270	GMA	1995
95RRRC25	REEFTON	RC	120	534494.5	6210720.34	258.51	-60	270	GMA	1995
95RRRC26	REEFTON	RC	90	534494.5	6210729.34	257.78	-60	270	GMA	1995
95RRRC27	REEFTON	RC	60	534494.5	6210735.34	256.99	-60	270	GMA	1995
95RRRC28	REEFTON	RC	60	534494.5	6210804.34	257.01	-60	270	GMA	1995

95RRRC29	REEFTON	RC	78	534494.5	6210811.34	257.03	-60	270	GMA	1995
95RRRC30	REEFTON	RC	60	534494.5	6210819.34	256.9	-60	270	GMA	1995
95RRRC31	REEFTON	RC	102	534494.5	6210826.34	256.35	-60	270	GMA	1995
95RRRC32	REEFTON	RC	60	534494.5	6210833.34	255.47	-60	270	GMA	1995
95RRRC33	REEFTON	RC	114	534494.5	6210793.34	256.63	-60	270	GMA	1995
95RRRC34	REEFTON	RC	138	534494.5	6210447.34	258.94	-60	270	GMA	1995
95RRRC35	REEFTON	RC	60	534494.5	6210454.34	258.21	-60	270	GMA	1995
95RRRC36	REEFTON	RC	60	534494.5	6210461.34	257.75	-60	270	GMA	1995
95RRRC37	REEFTON	RC	102	534494.5	6210421.34	261.72	-60	270	GMA	1995
95RRRC38	REEFTON	RC	60	534494.5	6210414.34	261.69	-60	270	GMA	1995
95RRRC39	REEFTON	RC	120	534494.5	6210137.34	265.36	-60	270	GMA	1995
95RRRC40	REEFTON	RC	72	534494.5	6210119.34	266.89	-60	270	GMA	1995
96RRRC41	REEFTON	RC	66	534494.5	6210081.34	258	-60	270	GMA	1996
96RRRC42	REEFTON	RC	60	534494.5	6210088.34	258	-60	270	GMA	1996
96RRRC43	REEFTON	RC	60	534494.5	6210097.34	258	-60	270	GMA	1996
96RRRC44	REEFTON	RC	60	534494.5	6210102.34	258	-60	270	GMA	1996
96RRRC45	REEFTON	RC	60	534494.5	6210179.34	258	-60	270	GMA	1996
96RRRC46	REEFTON	RC	102	534494.5	6210186.34	258	-60	270	GMA	1996
96RRRC47	REEFTON	RC	66	534494.5	6210194.34	258	-60	270	GMA	1996
96RRRC48	REEFTON	RC	66	534494.5	6210201.34	258	-60	270	GMA	1996
96RRRC49	REEFTON	RC	84	534494.5	6210161.34	280	-60	270	GMA	1996
96RRRC50	REEFTON	RC	60	534494.5	6210319.34	280	-60	270	GMA	1996
96RRRC51	REEFTON	RC	60	534494.5	6210327.34	280	-60	270	GMA	1996
96RRRC52	REEFTON	RC	60	534494.5	6210334.34	280	-60	270	GMA	1996
96RRRC53	REEFTON	RC	60	534494.5	6210341.34	280	-60	270	GMA	1996
96RRRC54	REEFTON	RC	60	534494.5	6210348.34	280	-60	270	GMA	1996
96RRRC55	REEFTON	RC	102	534494.5	6210507.34	258	-60	270	GMA	1996
96RRRC56	REEFTON	RC	66	534494.5	6210516.34	258	-60	270	GMA	1996
96RRRC57	REEFTON	RC	60	534494.5	6210607.34	258	-60	270	GMA	1996
96RRRC58	REEFTON	RC	66	534494.5	6210615.34	258	-60	270	GMA	1996
96RRRC59	REEFTON	RC	60	534494.5	6210622.34	258	-60	270	GMA	1996
96RRRC60	REEFTON	RC	60	534494.5	6210706.34	258	-60	270	GMA	1996

96RRRC61	REEFTON	RC	60	534494.5	6210713.34	258	-60	270	GMA	1996
96RRRC62	REEFTON	RC	60	534494.5	6210748.34	258	-60	270	GMA	1996
96RRRC63	REEFTON	RC	60	534494.5	6210756.34	258	-60	270	GMA	1996
96RRRC64	REEFTON	RC	66	534494.5	6210762.34	258	-60	270	GMA	1996
96RRRC65	REEFTON	RC	66	534494.5	6210769.34	258	-60	270	GMA	1996
96RRRC66	REEFTON	RC	78	534494.5	6210846.34	258	-60	270	GMA	1996
96RRRC67	REEFTON	RC	60	534494.5	6210853.34	258	-60	270	GMA	1996
96RRRC68	REEFTON	RC	78	534494.5	6210861.34	258	-60	270	GMA	1996
96RRRC69	REEFTON	RC	60	534494.5	6210868.34	258	-60	270	GMA	1996
96RRRC70	REEFTON	RC	72	534494.5	6209976.34	267.98	-60	270	GMA	1996
96RRRC71	REEFTON	RC	66	534494.5	6209984.34	267.57	-60	270	GMA	1996
96RRRC72	REEFTON	RC	60	534494.5	6209991.34	267.39	-60	270	GMA	1996
96RRRC73	REEFTON	RC	66	534494.5	6209998.34	266.54	-60	270	GMA	1996
96RRRC74	REEFTON	RC	60	534494.5	6210007.34	265.22	-60	270	GMA	1996
96RRRC75	REEFTON	RC	60	534494.5	6209880.34	268.78	-60	270	GMA	1996
96RRRC76	REEFTON	RC	60	534494.5	6209883.34	268.79	-60	270	GMA	1996
96RRRC77	REEFTON	RC	60	534494.5	6209894.34	267.63	-60	270	GMA	1996
96RRRC78	REEFTON	RC	60	534494.5	6209902.34	266.42	-60	270	GMA	1996
96RRRC79	REEFTON	RC	84	534494.5	6209908.34	265.73	-60	270	GMA	1996
96RRRC80	REEFTON	RC	60	534494.5	6209837.34	267.54	-60	270	GMA	1996
96RRRC81	REEFTON	RC	60	534494.5	6209830.34	268.16	-60	270	GMA	1996
96RRRC82	REEFTON	RC	78	534494.5	6209860.34	266.4	-60	270	GMA	1996
96RRRC83	REEFTON	RC	60	534494.5	6209783.34	267.64	-60	270	GMA	1996
96RRRC84	REEFTON	RC	72	534494.5	6209796.34	267.34	-60	270	GMA	1996
96RRRC85	REEFTON	RC	60	534494.5	6209804.34	267.57	-60	270	GMA	1996
96RRRC86	REEFTON	RC	72	534494.5	6209811.34	267.46	-60	270	GMA	1996
96RRRC87	REEFTON	RC	60	534494.5	6209936.34	268.88	-60	270	GMA	1996
96RRRC88	REEFTON	RC	84	534494.5	6209946.34	267.6	-60	270	GMA	1996
96RRRC89	REEFTON	RC	66	534494.5	6210144.34	260	-60	270	GMA	1996
96RRRC90	REEFTON	RC	60	534494.5	6210152.34	260	-60	270	GMA	1996
96RRRC91	REEFTON	RC	60	534494.5	6210228.34	280	-60	270	GMA	1996
96RRRC92	REEFTON	RC	60	534494.5	6210895.34	280	-60	270	GMA	1996

96RRRC93	REEFTON	RC	60	534494.5	6210902.34	280	-60	270	GMA	1996
96RRRC94	REEFTON	RC	60	534494.5	6210910.34	280	-60	270	GMA	1996
96RRRC95	REEFTON	RC	66	534494.5	6210917.34	280	-60	270	GMA	1996
96RRRC96	REEFTON	RC	60	534494.5	6210924.34	280	-60	270	GMA	1996
96RRRC97	REEFTON	RC	60	534494.5	6210709.34	280	-60	270	GMA	1996

Table 1. Non resource historical exploration drill hole results referred to in this document.

Competent Person's Statement – Exploration Results

The information in this report that relates to Exploration Results pertaining to the Gilmore Project is based on information compiled by Mr. Scott Munro MAIG. Mr. Munro has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Munro consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Munro is a Director of Munro Geological Services Pty Ltd who is a shareholder and option holder in LinQ Minerals Limited.