

LINQ MINERALS LIMITED Updated Mineral Resource Statement Gilmore Au-Cu Project, NSW

LinQ Minerals Limited is the owner of the Gilmore Gold-Copper Project. The Project is located immediately north of the NSW township of Temora and extends north to West Wyalong. The Project is host to multiple Late Ordovician to Early Silurian porphyry copper-gold deposits and the epithermal Gidginbung deposit which produced approximately 540,000 ounces of gold between 1987 and 1996.

LinQ Minerals updated JORC 2012 compliant Mineral Resource Estimates (MRE) for 5 porphyry related copper gold deposits, Dam, Estoril, Culingerai, Mandamah & Yiddah and for the Gidginbung epithermal deposit. This update was undertaken in August 2024.

Summary

Global MRE of approximately 516Mt containing ~3.7Moz Au and ~1.2Mt Cu metal¹, comprising:

- ~469Mt sulphide porphyry copper and gold MRE at 0.2g/t Au and 0.2% Cu containing ~2.57Moz Au and ~1.15Mt Cu (0.40% CuEq for ~1.78Mt CuEq);
- **~35Mt** sulphide Mineral Resource at Gidginbung at 0.8g/t Au and 0.1% Cu containing ~0.84Moz Au and ~20Kt Cu; and
- **~12Mt** oxide Mineral Resource at 0.7g/t Au and 0.1% Cu containing ~0.25Moz Au and ~10Kt Cu

¹ Gilmore Project Sulphide Porphyry Resources at a 0.2% CuEq Cut-off, Gidginbung Sulphide Resource and Gilmore Project Oxide Resources at 0.3g/t Au Cut-off, as reported in Table 1 below. CuEq values calculated using \$US8,500/t Cu and \$US2,100/Oz Au, CuEq (%) = ((Cu (g/t)) + (Au (g/t) *67.515/0.0085))/10000.

Table 1 Total Mineral Resources for the Gilmore Project

			II	NDICAT	ED			INF	ERRED)			TO	TAL				META	۱L	
DEPOSIT	Cut- off	tonnes (Mt)	Cu equi v %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	Cu equiv (Kt)	Cu (Kt)	Au (Koz)	Mo (t)
Oxide Resources	reporte	d to a gold	g/t cut	-off																
MANDAMAH	0.3						3.5		0.2	1.0		3.5		0.2	1.0			10	110	
GIDGINBUNG	0.3	4.8		0.0	0.6		3.3		0.0	0.4		8.1		0.0	0.5			-	140	
TOTAL OXIDE	0.3	4.8		0.0	0.6		6.8		0.1	0.7		11.6		0.1	0.7			10	250	
Sulphide Porphy	ry Resou	urces repo	rted to a	a coppe	er equiva	alent % cut-	off													
	0.2	29.6	0.7	0.3	0.4	32	47.3	0.3	0.2	0.2	37	76.9	0.5	0.2	0.3	35	350	180	700	2,700
ПАМ	0.3	26.1	0.7	0.3	0.5	31	23.6	0.4	0.2	0.3	31	49.7	0.6	0.3	0.4	31	280	140	590	1,500
DAM	0.4	23.0	0.7	0.3	0.5	30	11.4	0.5	0.2	0.3	28	34.4	0.7	0.3	0.4	30	230	110	490	1,000
	0.5	19.0	0.8	0.4	0.6	30	4.9	0.6	0.3	0.4	26	23.9	0.8	0.4	0.5	29	180	90	400	700
	0.2						33.0	0.4	0.2	0.3	8	33.0	0.4	0.2	0.3	8	120	60	270	300
ESTORI	0.3						22.2	0.4	0.2	0.3	6	22.2	0.4	0.2	0.3	6	100	40	210	100
LOTOINE	0.4						11.8	0.5	0.2	0.4	6	11.8	0.5	0.2	0.4	6	60	30	140	100
	0.5						5.8	0.6	0.2	0.4	5	5.8	0.6	0.2	0.4	5	30	10	80	-
	0.2						43.2	0.4	0.2	0.2	23	43.2	0.4	0.2	0.2	23	180	100	310	1,000
	0.3						27.6	0.5	0.3	0.3	22	27.6	0.5	0.3	0.3	22	140	80	260	600
00LintoLint	0.4						18.7	0.6	0.3	0.3	18	18.7	0.6	0.3	0.3	18	110	60	200	300
	0.5						12.4	0.7	0.4	0.4	15	12.4	0.7	0.4	0.4	15	80	40	160	200
	0.2						37.2	0.4	0.3	0.2	35	37.2	0.4	0.3	0.2	35	160	110	220	1,300
MANDAMAH	0.3						24.0	0.5	0.4	0.2	30	24.0	0.5	0.4	0.2	30	130	90	180	700
	0.4						15.1	0.7	0.4	0.3	26	15.1	0.7	0.4	0.3	26	100	70	140	400
	0.5						10.6	0.8	0.5	0.3	26	10.6	0.8	0.5	0.3	26	80	50	110	300
	0.2						278.8	0.3	0.3	0.1	35	278.8	0.3	0.3	0.1	35	960	700	1,080	9,700
YIDDAH	0.3						161.4	0.4	0.3	0.1	34	161.4	0.4	0.3	0.1	34	670	490	730	5,500
1.2.27.11	0.4						70.6	0.5	0.4	0.2	32	70.6	0.5	0.4	0.2	32	350	260	390	2,300
	0.5						25.7	0.6	0.4	0.2	34	25.7	0.6	0.4	0.2	34	150	110	170	900
7074	0.2	29.6	0.7	0.3	0.4	32	439.5	0.4	0.2	0.2	32	469.1	0.4	0.2	0.2	32	1,780	1,150	2,570	15,000
	0.3	26.1	0.7	0.3	0.5	31	258.9	0.4	0.3	0.2	30	285.0	0.5	0.3	0.2	30	1,320	830	1,970	8,500
PORPHYRY	0.4	23.0	0.7	0.3	0.5	30	127.7	0.5	0.3	0.2	27	150.7	0.6	0.3	0.3	27	850	520	1,350	4,100
	0.5	19.0	0.8	0.4	0.6	30	59.4	0.6	0.4	0.3	25	78.4	0.7	0.4	0.4	26	530	310	910	2,100
Sulphide Gidginb	oung Res	sources re	ported t	to a gol	d g/t cut	-off														
	0.3	12.4		0.1	0.9		22.6		0.1	0.7		35.0		0.1	0.8			20	840	
GIDGINBUNG	0.4	10.4		0.1	1.0		16.3		0.1	0.8		26.7		0.1	0.9			20	750	
	0.5	8.8		0.1	1.1		12.1		0.1	0.9		20.8		0.1	1.0			10	670	

Note Table 1:

1) Copper Equivalent values calculated using a copper price of US8500/tonne and gold price of US2100/Oz, Cu Equiv (%) = ((Cu (g/t)) + (Au (g/t)*67.515/0.0085))/10000).

2) Molybdenum is not used in the calculation of a copper equivalent value.

3) Preliminary copper floatation recoveries for the porphyry sulphide resources range from 80 to 94% for copper and 50 to 73% for gold.

- 5) Dam, Estoril and Gidginbung reported to approximately 300m depth, Culingerai, Mandamah to approximately 350m depth and Yiddah to approximately 450m depth.
- 6) The metals included in the Estimate (Copper, Gold and Molybdenum) have a reasonable potential to be recovered and sold.

Competent Persons Statement

The information in this report that relates to Exploration Results and Mineral Resources pertaining to the Gilmore Project is based on information compiled by Mr. Scott Munro MAIG of Munro Geological Services Pty Ltd. Mr. Munro has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Munro consents to the inclusion in the report of the matters based on their information in the form and context in which it appears. Mr Munro is a Director of Munro Geological Services Pty Ltd who is a shareholder and option holder in LinQ Minerals Limited.

Competent Person's Statement – Gidginbung Estimation and Reporting of Mineral Resources

The Competent Person for the Gidginbung Mineral Resource Estimate is Mr Arnold van der Heyden of H&S Consultants Pty Limited. The information in the report to which this statement is attached that relates to the Gidginbung Mineral Resource Estimate is based on information compiled by Mr van der Heyden, who has sufficient experience that is relevant to the resource estimation to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr van der Heyden is an employee of H&S Consultants Pty Limited, a Sydney based geological consulting firm and was engaged by LinQ Minerals Limited. Mr van der Heyden is a Member and Chartered Professional of The Australasian Institute of Mining and Metallurgy ("AusIMM") and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1.1, 1.2 & 1.3 below are extracted from the MRE Table 1 above and displayed for various deposits and at various cut-offs:

		INDICATED				INFERRED				TOTAL					METAL					
DEPOSIT	Cut-off	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	Cu equiv (Kt)	Cu (Kt)	Au (Koz)	Mo (t)
Oxide Resources reported to a gold	d g/t cut-off																			
MANDAMAH	0.3						3.5		0.2	1		3.5		0.2	1.0			10	110	
GIDGINBUNG	0.3	4.8		0	0.6		3.3		0	0.4		8.1		0	0.5			-	140	
TOTAL OXIDE	0.3	4.8		0	0.6		6.8		0.1	0.7		11.6		0.1	0.7			10	250	
Sulphide Porphyry Resources repo	rted to a copp	er equivale	nt % cut-off																	
DAM	0.2	29.6	0.7	0.3	0.4	32	47.3	0.3	0.2	0.2	37	76.9	0.5	0.2	0.3	35	350	180	700	2,700
ESTORIL	0.2						33	0.4	0.2	0.3	8	33	0.4	0.2	0.3	8	120	60	270	300

Table 1.1 Total Mineral Resources for the Gilmore Project

CULINGERAI	0.2						43.2	0.4	0.2	0.2	23	43.2	0.4	0.2	0.2	23	180	100	310	1,000
MANDAMAH	0.2						37.2	0.4	0.3	0.2	35	37.2	0.4	0.3	0.2	35	160	110	220	1,300
YIDDAH	0.2						278.8	0.3	0.3	0.1	35	278.8	0.3	0.3	0.1	35	960	700	1,080	9,700
TOTAL SULPHIDE PORPHYRY	0.2	29.6	0.7	0.3	0.4	32	439.5	0.4	0.2	0.2	32	469.1	0.4	0.2	0.2	32	1,780	1,150	2,570	15,000
Sulphide Gidginbung Resources rep	ported to a go	old g/t cut-of	f																	
GIDGINBUNG	0.3	12.4		0.1	0.9		22.6		0.1	0.7		35		0.1	0.8			20	840	
TOTAL GLOBAL MRE		46.8					468.9					515.7					1780	1,180	3,660	15,000

Table 1.2 Mineral Resources for Gidginbung & Dam – Global grade cut off

			INDICA	TED				INFER	RED				τοτα	۱L				MET	AL.	
DEPOSIT	Cut-off	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	Cu equiv (Kt)	Cu (Kt)	Au (Koz)	Mo (t)
Oxide Resources reported to a gold	g/t cut-off																			
GIDGINBUNG	0.3	4.8		0	0.6		3.3		0	0.4		8.1		0	0.5				140	
Sulphide Gidginbung Resources rep	orted to a gold	d g/t cut-off																		
GIDGINBUNG	0.3	12.4		0.1	0.9		22.6		0.1	0.7		35		0.1	0.8			20	840	
Sulphide Porphyry Resources repor	ted to a coppe	er equivalent	t % cut-off																	
DAM	0.2	29.6	0.7	0.3	0.4	32	47.3	0.3	0.2	0.2	37	76.9	0.5	0.2	0.3	35	350	180	700	2,700
TOTAL		46.8					73.2					120						200	1680	

Table 1.3 Mineral Resources for Gidginbung & Dam – Higher cut off

			INDICA	TED				INFERF	RED				τοτ	۹L				MET	AL	
DEPOSIT	Cut-off	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	tonnes (Mt)	Cu equiv %	Cu %	Au g/t	Mo g/t	Cu equiv (Kt)	Cu (Kt)	Au (Koz)	Mo (t)
Sulphide Gidginbung Resources rep	orted to a gold	d g/t cut-off																		
GIDGINBUNG	0.5	8.8		0.1	1.1		12.1		0.1	0.9		20.8		0.1	1.0			10	670	
Sulphide Porphyry Resources repor	ted to a coppe	er equivalent	: % cut-off																	
DAM	0.4	23	0.7	0.3	0.5	30	11.4	0.5	0.2	0.3	28	34.4	0.7	0.3	0.4	30	230	110	490	1,000
TOTAL		31.8					23.5					55.2						120	1160	

The following tables are provided to ensure compliance with the JORC Code (2012) edition requirements.

APPENDIX 1 JORC 2012 TABLE 1

GILMORE PROJECT – The Dam

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling techniques undertaken by previous owners include core sampling of HQ, NQ2 and/or NQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, open-hole percussion (PER), air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; PER, AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards. Diamond drilling was used to obtain 5,719 one metre; 1,518 two metre and 1,187 three metre samples along with significantly lesser quantities of other sample
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Inter metre samples along with significantly lesser quantities of other sample intervals varying from 74 metres to 0.2 metres. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 4,122 two metre samples and 414 three metre samples along with significantly lesser quantities of other sample intervals varying from 10 metres to 1 metre. RAB drilling was used to obtain 622 three metre, 554 two metre and 118 one metre samples along with significantly lesser quantities of other sample intervals varying from 66 metres to 0.58 metre. AC drilling was used to obtain 479 two metre samples along with significantly lesser quantities of 0.2 metre.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The drilling database for The Dam project comprises the results from 23 AC holes totalling 1,484 metres; 50 diamond drill holes DDH totalling 14,350.17 metres consisting of HQ-size (1,434.2 metres), HQ3-size (792.4 metres), NQ size (630.1 metres) and NQ3-size (2,948.9 metres) with size of the remaining meterage not recorded in the database; 133 RAB holes totalling 4,193.67 metres; 93 RC holes

Criteria	JORC Code Explanation	Commentary
		totalling 12,081.3 metres Of these, the results from 54 drillholes were used for the Dam resource interpretation and estimation. This drilling includes 28 Diamond drill holes, 8 RAB/AC holes, and 18 RC holes. Of these, 6 diamond drill holes, of the TTDD series, were drilled by Goldminco since 2007. Historical holes TD and TP series were drilled by Paragon Gold between 1990 and 1993. The ACDGB, DDnnGB (where nn is a two digit number), and RCnnGB holes were drilled by CRAE between 1993 and 1997. DRC01 and DD02 were drilled by Cyprus Amax between 1997 and 1999.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DDH – core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. RC/AC/RAB sample quality is assessed by the sampler by visual approximation on sample recovery and if the sample is dry, damp or wet.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	In highly fractured zones due to dissolution of gypsum, both CRAE and Goldminco utilised triple tube drilling to maximise recovery. For RC drilling, the drill cyclone is cleaned between rod changes and after each hole to minimise contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade is known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Project database records contain varyingly detailed geological logs of the range of all drilling products describing regolith, colour, weathering, texture, grain size, principal and secondary lithologies along with qualitative and quantitative assessments of alteration, sulphide minerals, veining, non-sulphide minerals and remarks. The level of detail logged complies with the Indicated and Inferred Mineral Resource classifications for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	Entire DD core and RC/AC/RAB chip samples were geologically logged by qualified geologists.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond drillcore of both HQ and NQ size from drilling by Paragon Gold, CRAE and Cyprus Gold was sawn in half by a diamond bladed core saw and half core was submitted for assay. Goldminco drillholes TTDD001-6 were started as aircore precollars to refusal. Aircore samples were collected in green bags every two metres by the drillers, and Goldminco field technicians or geologists sampled the bags using a spear. Two metre aircore samples were submitted for analysis. Drillcore at The Dam is very fractured, particularly from the surface down to 300m depth, in the shear zone in the hanging wall of the major fault. To improve core preservation, logging and sampling, triple tubed HQ3 core from Goldminco holes TTDD002, 3, 4 and 4A were placed into lengths of split 65mm diameter DWV PVC pipe, wrapped in plastic and cut with a bricksaw into lengths that would fit into core trays on site beside the drill rig. Drillcore from all the holes TTDD001 – 4A was cut in half, using a Westernex Almonte automatic core saw or where incompetent was split using a knife or rock chisel, and sampled every 1m for analysis.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Reverse circulation drilling samples were split by riffle splitters with a sample of between 3 and 5 kilograms submitted to the laboratory.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns. Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized. Goldminco aircore and half core samples were sent with standards every 50 samples to the SGS laboratory in West Wyalong for analysis. Samples between 1 and 3.5kg are dried, crushed, milled to <75 microns, and split for analysis.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Repeats and second splits for sampling undertaken by Goldminco were analyzed every twenty or so samples. A separate small subsample was sent to the SGS laboratory in Townsville for Cu, Pb, Zn, As, Ag, Mo and S analysis by ICP40Q using 4 acid digestion and ICP21Q for when elements were above normal detection limits.

Criteria	JORC Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the porphyry and related styles of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	CRAE analyzed for Au by 50g fire assay and Cu, Pb, Zn, Mo, Ag, As Mn, Fe by AAS. Cyprus Gold analyzed for Au by 50g fire assay and Cu, Pb, Zn by ICP methods. Goldminco samples were analyzed for Au by fire assay with AAS finish (FAA505) at West Wyalong.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyze the drilling products.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Repeats and second splits for sampling undertaken by Goldminco were analyzed every twenty or so samples. A program of external quality control (QC) and quality assurance (QA) has been applied by Goldminco for the Gilmore Project to check for contamination, accuracy and precision. Certified standards were inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The available QAQC assay data for the project was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard.
	The use of twinned holes.	There are no known twinned holes drilled for the Mineral Resource.

Criteria	JORC Code Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar surveys, where disclosed, were undertaken using GPS technology. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot, gyroscopic and north seeking gyroscopic instruments.
	Specification of the grid system used.	Collar and down hole azimuths used for The Dam Resource interpretation and estimation is based on AGD 66, Zone 55 datum. This was selected as all historical survey data were stored in AGD 66.
	Quality and adequacy of topographic control.	The drill hole collars were surveyed using GPS technology and these were used to build the topographic surface which is relatively flat.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The holes used for the resource estimation were drilled over approximately 1,200 metres strike length to a maximum vertical depth of 500 metres. The drill sections are spaced between 50 and 100 metres apart with each section having 2 or more holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined between 55 and 65 (124 holes); 65 to 75 (6 holes); 75 to 85 (3) and 85 to 90 (146). 11 of the moderate to steeply inclined holes were drilled towards ENE (61 degrees) and 124 were drilled towards WSW (243 degrees) relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the north-northwest strike of The Dam mineralized zone and intercept it obliquely at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the drilling was oriented perpendicular to the general strike of the Dam deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. A number of early diamond drill holes are stored at the Londonderry Core farm Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Cube Consulting was supplied by Goldminco with up to date graphs summarising the results of historic (in house) and current certified standards and laboratory duplicates. Blanks were not inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. For drilling undertaken by Goldminco, a certified standard was inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The available QAQC assay data for the project to the end of June was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard.

Criteria	JORC Code Explanation	Commentary
		Goldminco provided an accredited independent consultant with an MS Access
		drillhole database called Temora.mdb covering the Temora project areas.
		Goldminco managed the drilling database using acQuire software under the
		supervision of a full time database administrator. Goldminco had undertaken
		extensive validation of the database since acquisition of the project in 2003.
		The independent consultant undertook some cursory database validation checks
		and found the database to be clean, consistent and free of obvious errors. A senior
		representative of the independent consultancy undertook site based checks of the
		database to verify grade intersections were consistent with a visual inspection of
		mineralisation in the core. New and old collar positions were also verified where
		possible in the field.
		A further assessment of the database was undertaken by the Competent Person.
		No significant errors were found and it is considered that the data management
		processes in place are robust and adequate and believes that the database is an
		accurate representation of the project drilling data.

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Dam Project is located approximately 14 kilometres north-northwest of the town of Temora in central New South Wales, Australia. It falls partially within the confines of Exploration License EL5864 with the remaining portion falling within EL6845, both of which are 100% held by LinQ Minerals Limited. The titles are for Group 1 minerals. EL5864 was granted on 29 May 2001 and the expiry date is 28 May 2028. EL6845 was granted on 03 August 2007 and the expiry date is 03 August 2028. EL5864 has a royalty agreement of 2% NSR (Net Smelter Return) to Alcrest Royalties Australia Pty Ltd, payable upon the commencement of mining which partly covers The Dam prospect. EL6845 has a 12.5% Net Profits Interest for that part which covers the historic EL2151. This area includes the Mandamah, Culingerai and Estoril deposits but does not apply to the area hosting The Dam deposit.

	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Dam mineralisation was discovered in 1990 by Paragon Gold by RAB drilling in EL2059 east of the Gidginbung Gold-Silver Mine in ML1167. In 1993, Paragon Gold changed name to Gold Mines of Australia, and CRA Exploration farmed into the project and implemented various exploration techniques before exiting EL2059 in 1996. Cyprus Gold / Cyprus Amax farmed into EL2059 in 1997, collecting more data and calculating a preliminary resource estimate. Cyprus exited in 1999, Gold Mines of Australia went into receivership in 2000, and EL2059 was split into two. Goldfields Exploration / Aurion Gold Exploration and Newcrest Exploration both ended up with part of The Dam deposit. EL2059 of Goldfields Exploration /Aurion Gold Exploration was farmed out to Goldminco Corporation in 2004, and in 2006 a resource estimated for The Dam was completed Cube Consulting and reported in accordance with the NI 43-101 (Zammit, 2006). In 2006-2007 Goldminco drilled 4 diamond holes and flew a 50m spacing and 30m height detailed aeromagnetic survey using a helicopter. Later in 2007 EL2059 was grouped with the other Temora project ELs into a new single EL6845. Newcrest Exploration were granted EL5864 in 2001, and drilled 8 diamond holes west and south of The Dam prospect until 2007 when they commenced farm out negotiations. In 2008 Newcrest farmed out EL5864 to Templar Resources. Sandfire Resources NL acquired the project from Goldminco (then a wholly owned subsidiary of Straits Resources Limited) in October 2015. No further drilling was completed at the Dam during Sandfire's ownership of the project. The Gilmore Project (previously known as the Temora Project) together with the drill database and other historical data on the project, was acquired by LinQ Minerals Limited from Sandfire Resources on 13 July 2023.
Geology	Deposit type, geological setting and style of mineralisation.	The Gilmore project area is located in the Gilmore Fault Zone, a major fault bounding the Eastern Lachlan Orogen and Central Lachlan Orogen of Eastern Australia. Three main geological units are present in the tenement areas, from west to east respectively: The Wagga Group, a Ordovician-Early Silurian quartzose sandstone-shale sequence that formed as deep ocean turbidites, and are variably metamorphosed

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	by intrusive S-type granites, The Gidginbung Volcanics, an Ordovician-Early Silurian mafic-intermediate volcanic and intrusive sequence of the Macquarie Arc. Macquarie Arc volcanics formed in an island arc above subduction, and The Ootha Group, a Siluro-Devonian clastic sequence of conglomerate- sandstone-siltstone and minor felsic volcanics. The unit widely recognised in the area is the Yiddah Formation. Mineralisation styles can be broadly grouped into three main types: High sulphidation epithermal Au: Gidginbung Porphyry Cu-Au-Mo: Yiddah, Mandamah, Culingerai, Estoril, The Dam Mesothermal vein Au: Reefton, Barmedman The mineralised zone at The Dam deposit is hosted by variably altered microtonalite, andesite, dacitic volcanics, and volcaniclastics of the Late Ordovician Gidginbung Volcanics (Mowat 2003). The zone has had a complex history of overprinting alteration and multi-generational development (telescoping) of vein systems. The mineralisation is interpreted to be a late Ordovician porphyry Cu-Au system with an overprinting advanced argillic shear-related system that formed in an Early Silurian high strain zone and sourced fluids from the waning stages of the Late Ordovician to Early Silurian magmatic events. Refer to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – The Dam.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The reported assays are weighted for their assay interval width. The majority of the assay interval widths are 1 metre, but this weighting does take into account the non 1 metre intervals and weights the average assay results accordingly.

	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	values should be clearly stated.	No exploration results have been reported in this release.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	No exploration results have been reported in this release.
	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No exploration results have been reported in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No exploration results have been reported in this release.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan of the Dam Prospect drilling used in the resource. Ore Zone shown in red.

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary metallurgical test work for five deposits from the Temora area, including Dam, was completed by AMMTEC, Perth, during the period September 2008 to January 2009. Composites were prepared from single drillholes from each of the five deposits. Grinding tests on the composites were within the range seen for porphyry deposits in Arizona (USA and British Columbia (Canada). Due to a wide range of alteration styles across the Temora deposits, resulting in differences in sample hardness, a wide variation in grind time was necessary to achieve this size range across individual deposits. Flotation testing on the composites clearly demonstrated that at the right grind and reagent regime, copper recoveries of over 90% could be achieved at marketable concentrate grades of over 20%Cu and in all cases the copper floated exceedingly guickly.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Continue infill drilling within the currently modelled resource outlines in order to increase the confidence in the geological and weathering models as well as establish grade continuity; Continue with resource definition drilling to test strike potential; Continue with district exploration incorporating current understanding of geological structural and mineralisation controls at the existing Temora Prospects; Expand and maintain an auditable quality assurance system for all ongoing data collection. Continue with collection of SG measurements, and Additional metallurgical test work to be undertaken as a routine part of exploration.

Hole ID	Hole Type	Max Depth	AMG East	AMG North	AMG RL	Company
ACDGB006	DDH	754	542353	6201580	280	NEWCREST
DD02	DDH	414	543021	6201731	266	CYPRUS
DD93GB32	DDH	297	543158	6201399	268	CRAE
DD93GB33	DDH	122	543037	6201347	270	CRAE
DD93GB35	DDH	311	542910	6201677	269	CRAE
DD93GB36	DDH	140	543187	6201222	269	CRAE
DD93GB37	DDH	196	542867	6201656	270	CRAE
DD93GB39	DDH	167	542942	6201518	270	CRAE
DD93GB42	DDH	93	542773	6201612	274	CRAE
DD93GB45	DDH	357	543052	6201546	269	CRAE
DD93GB52	DDH	573	543182	6201609	267	CRAE

DD94GB61	DDH	312	542735	6201863	270	CRAE
DD94GB62	DDH	326	542836	6201441	274	CRAE
DD94GB64	DDH	264	543002	6201521	269	CRAE
DD94GB68	DDH	246	543046	6201443	270	CRAE
DD94GB71	DDH	200	543103	6201362	269	CRAE
DD94GB72	DDH	240	542967	6201605	268	CRAE
DD95GB141	DDH	307	542577	6201906	274	CRAE
DRC01	RC	165	542517	6202121	270	CYPRUS
RC93GB43	RC	168	542634	6201820	273	CRAE
RC93GB46	RC	249	542678	6201845	271	CRAE
RC94GB97	RC	198	543236	6201235	268	CRAE
TD076	DDH	78	543138	6201204	270	PARAGON
TD083TP581	DDH	97	543085	6201317	269	PARAGON
TD084TP630	DDH	113	543085	6201361	268	PARAGON
TD089TP665	DDH	120	543123	6201290	269	PARAGON
TP138	RC	129	542706	6201695	276	PARAGON
TP139	RC	135	542713	6201693	276	PARAGON
TP387	RAB	24	542890	6201444	271	PARAGON
TP591	RC	66	542930	6201592	270	PARAGON
TP592	RC	60	543049	6201300	270	PARAGON
TP613	RC	70	543045	6201386	270	PARAGON
TP621	RC	60	542754	6201724	273	PARAGON
TP628	RC	80	543031	6201380	270	PARAGON
TP629	RC	80	543059	6201348	269	PARAGON
TP632	RC	80	542688	6201854	272	PARAGON
TP635	AC	50	543049	6201349	270	PARAGON
TP636	AC	68	543039	6201344	270	PARAGON
TP639	AC	60	543146	6201280	269	PARAGON
TP647	AC	120	543125	6201290	269	PARAGON
TP648	AC	146	543109	6201377	269	PARAGON
TP660	RC	120	543061	6201395	270	PARAGON
TP662	RC	100	543002	6201370	271	PARAGON
TP666	RAB	120	543053	6201348	270	PARAGON
TP667	RAB	104	543136	6201249	270	PARAGON
TP670	RC	102	542762	6201781	272	PARAGON
TP671	RC	120	542820	6201633	272	PARAGON
TP672	RC	90	543062	6201306	270	PARAGON
TTDD001	DDH	525	543063	6201634	268	GOLDMINCO
TTDD002	DDH	432	543172	6201471	270	GOLDMINCO
TTDD003	DDH	370	543237	6201336	270	GOLDMINCO
TTDD004A	DDH	666	543152	6201681	267	GOLDMINCO
TTDD005	DDH	594	542835	6201914	265	GOLDMINCO
TTDD006	DDH	495	542648	6202071	268	GOLDMINCO

Drillholes used in The Dam resource model

JORC 2012 TABLE 1 GILMORE PROJECT – Estoril

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling techniques undertaken by previous owners include core sampling of NQ2 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond drilling was used to obtain 2,071 one metre and 230 two metre samples along with significantly lesser quantities of other sample intervals varying from 4 metres to 0.3 metre. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 321 two metre samples and 1 one metre sample. RAB drilling was used to obtain 7 three metre samples and 1 one point eight metre sample. AC drilling was used to obtain 1,538 two metre, 308 four metre and 29 one metre samples.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The drilling database for the Estoril project comprises the results from 55 air core (AC) holes totaling 4,255.5 metres; 1 air core with diamond tail (ACD) hole totaling 504 metres; 6 diamond drill holes (DDH) totaling 2,204.6 metres; 1 rotary air blast (RAB) holes totaling 79.8 metres and 5 reverse circulation (RC) holes totaling 693 metres. A total of 12 air core (AC), 3 reverse circulation (RC) and 5 diamond (DDH, ACD, RCD) holes were used as part of the resource estimate.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DDH – core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. RC/AC/RAB sample quality is assessed by the sampler by visual approximation on sample recovery and if the sample is dry, damp or wet.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	It is assumed that appropriate measures were taken by Goldminco to maximise sample recovery, however documentation is incomplete.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	It is assumed that appropriate measures were taken by Goldminco to maximise sample recovery, however documentation is incomplete.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Project database records contain varyingly detailed geological logs of all drilling products describing regolith, colour, weathering, texture, grain size, principal and secondary lithologies along with qualitative and quantitative assessments of alteration, sulphide minerals, veining, non-sulphide minerals and remarks. The level of detail logged complies with the Inferred Mineral Resource classification for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	68 of the 68 or 100% of the holes drilled have been logged. Similarly, 7,269.25 metres from a total of 7736.9 metres or 94% of the metres drilled have been logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	The seven diamond holes were sampled every 2m or 4m in the aircore precollars, and then every 1m of half NQ2 core.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Aircore holes were sampled as 2m or 4m composites, and RC holes as 2m composites.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns.

Criteria	JORC Code Explanation	Commentary
		Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	No records as to the use of duplicate and check sampling protocols and activities are evident in the Goldminco database.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the porphyry and related styles of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples between 1 and 3.5kg were dried, crushed and milled by ALS Orange for analysis of Au by fire assay and AA26, and As, Bi, Cu, Fe, Mo, Ni, Pb, S, Zn by ICP42, and OG49 where elements are above normal detection limits. Goldminco samples were analysed for Au by fire assay with AAS finish (FAA505) at SGS West Wyalong. Repeats and second splits were analysed every twenty or so samples. A separate small subsample was sent to the SGS laboratory in Townsville for Cu, Pb, Zn, As, Ag, Mo and S analysis by ICP40Q using 4 acid digestion and ICP21Q for when elements are above normal detection limits.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	A program of external quality control (QC) and quality assurance (QA) has been applied by Goldminco for the Gilmore Project to check for contamination, accuracy and precision. Certified standards were inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The available QAQC assay data for the project was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. Overall, the standards have performed well and indicate the sample data is of an acceptable standard.

Criteria	JORC Code Explanation	Commentary
	The use of twinned holes.	There are no known twinned holes drilled for the Mineral Resource.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar surveys, where disclosed, were undertaken using GPS technology. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot, gyroscopic and north seeking gyroscopic instruments.
	Specification of the grid system used.	Collar and down hole azimuths used for the Estoril Resource interpretation and estimation is based on AGD 66, Zone 55 datum. This was selected as all historical survey data were stored in AGD 66.
	Quality and adequacy of topographic control.	The drill hole collars were surveyed using GPS technology and these were used to build the topographic surface which is relatively flat.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The holes used for the resource estimation were drilled over approximately 600 metres strike length to a maximum vertical depth of 300 metres. The drill sections are spaced at approximately100 metre centres along strike with each section having 2 or more holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined at 60 degrees (11 holes) and vertically (50 holes). 11 of the moderate to steeply inclined holes were drilled towards the ENE (66 degrees) relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the strike of the Estoril mineralized zone and intercept it obliquely at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the drilling was oriented perpendicular to the general strike of the Estoril deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	Sample storage undertaken by the previous owner of the project (Goldminco) was as follows: Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Cube Consulting was supplied by Goldminco with up to date graphs summarising the results of historic (in house) and current certified standards and laboratory duplicates. Blanks were not inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. For drilling undertaken by Goldminco, a certified standard was inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The available QAQC assay data for the project to the end of June was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an

Criteria	JORC Code Explanation	Commentary
		acceptable standard. A further assessment of the database was undertaken by the Competent Person. No significant errors were found and it is considered that the data management processes in place are robust and adequate and believes that the database is an accurate representation of the project drilling data.

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	The Estoril deposit is located 2km west of the Reefton locality and rail siding, and 4km south along a NNW-SSE strike from the Culingerai deposit in central New South Wales, Australia. It falls completely within the confines of Exploration License EL6845 held by LinQ Minerals Limited. The title is for Group 1 minerals and was granted on 03 August 2007. The expiry date is 03 August 2028. In addition to the statutory royalties payable to the New South Wales Department of Primary Industries for the right to extract and use the State's mineral resources, a portion of EL6845 (referred to as EL 2151) has an equitable 12.5% net profit interest royalty agreement with RG Royalties LLC. This area includes the Mandamah, Culingerai and a portion of the Estoril deposits. There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	operate in the area. Acknowledgment and appraisal of exploration by other parties.	The Estoril deposit was highlighted as having anomalous Cu and Au from aircore drilling in 2002-2002 by Goldfields Exploration /Aurion Gold Exploration in previous tenements EL2151 and EL5845. These ELs were farmed out to Goldminco Corporation in 2004. In 2007, EL2151 and EL5845 were grouped with the other Temora project ELs into a new single EL6845. Sandfire Resources NL acquired the project and EL6845 from Goldminco (then a wholly owned subsidiary of Straits Resources Limited) in October 2015. No further exploration drilling was completed at Estoril by Sandfire. The Gilmore Project (previously known as the Temora Project) together with the drill database and other historical data on the project, was acquired by LinQ Minerals Limited from Sandfire Resources on 13 July 2023.

Geology	Deposit type, geological setting and style of mineralisation.	The Gilmore project area is located in the highly prospective late Ordovician Gidginbung Volcanics, which form a north-north west trending belt from Temora to West Wyalong. The Gidginbung Volcanics, and to a lesser extent, the surrounding Silurian sediments are a very well mineralised group of rocks with numerous Au and Cu occurrences distributed throughout the entire belt. Mineralisation styles can be broadly grouped into three main types: High sulphidation epithermal Au; Gidginbung Porphyry Cu-Au-Mo. Yiddah, Mandamah, Culingerai, Estoril, The Dam Mesothermal vein Au; Reefton, Barmedman The main targets in the Gilmore project area are porphyry Cu-Au and high or low sulphidation epithermal Au deposits. The Estoril prospect has basic to intermediate rocks of the Gidginbung Volcanics, intruded by tonalite (herein named diorite), hornblende gabbro and finally high-K micro- monzodiorite porphyry. Fracturing, veining and hydrothermal alteration related to a porphyry-type Cu (-Au) mineralising system is recognised at this project, with zones of potassic, propylitic, transitional propylitic to phyllic, and argyllic alteration.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – Estoril.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The reported assays are un cut length weighted averages.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report. Comments relating to the data aggregation methods relevant to the Mineral Resource Estimate can be found in Section 1 – "Sampling Techniques"

	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.				
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.				
	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.				
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 No exploration has been reported in this release, therefore there are no drill hol intercepts to report. 				
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Estoril Prospect – Plan				

		100.7						
)	3B
		-200/Z	6210200 N	6210400 N	6210600 N	6210800 N	6211000 N	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting is or relevant results h	considered nave been d	by the Compo lisclosed for the	etent Person his current pł	to be balanc nase of explo	ed and all ration.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary meta including Estoril, 2008 to January of the five deposi Grinding tests or in Arizona (USA styles across the wide variation in individual deposit Flotation testing reagent regime, of concentrate grad quickly.	allurgical tes was comple 2009. Comp its. In the compo- and British Gilmore de grind time v ts. on the com copper reco les of over 2	t work for five eted by AMM posites were solumbia (Ca posits, result vas necessar posites clearl veries of ove 20%Cu and in	e deposits fro TEC, Perth, o prepared fror thin the rang anada). Due t ing in differer y to achieve y demonstrat r 90% could l a all cases the	om the Temor during the pe m single drillh te seen for po to a wide rang nces in samp this size rang ted that at the be achieved e copper floa	a area, riod Septe ioles from irphyry de ge of altei le hardne je across e right grir at market ted excee	ember a each eposits ration ss, a nd and able edingly

Further work	The nature and scale of planned further work (eg tests for lateral	Continue infill drilling within the currently modeled resource outlines in order to
	extensions or depth extensions or large-scale step-out drilling).	increase the confidence in the geological and weathering models as well as
		establish grade continuity.
	Diagrams clearly highlighting the areas of possible extensions,	Continue with resource definition drilling to test strike potential;
	including the main geological interpretations and future drilling	Continue with district exploration incorporating current understanding of geological,
	areas, provided this information is not commercially sensitive.	structural and mineralisation controls at the existing Gilmore Prospects;
		Expand and maintain an auditable quality assurance system for all ongoing data
		collection;
		Continue with collection of SG measurements; and
		Additional metallurgical test work to be undertaken as a routine part of exploration.

Section 3: Estimation and Reporting of Mineral Resources

Criteria		Commentary
Database Measures taken to ensure that data has not been corrupted for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purper		The database used for the Estoril resource modelling and estimation was extracted from the Companies Datashed database which is a professional relational SQL database management package. Datashed is an industry recognized data management system that utilizes rigorous data validation procedures during data entry along with enhanced security and flexible reporting to protect the exploration records.
	Data validation procedures used.	For the Mineral Resource, data tables were exported from the SQL database as comma separated files (CSV's) using export tools embedded with the database management system. These CSV files were then imported into a standalone Access database for the sole purpose of the estimation. The project records extracted from the master database have been checked and validated by an independent expert who found the database to be clean, consistent and free of obvious errors.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Several project site visits have previously been undertaken by the Competent Person to verify drill hole collar locations and visual grade intersections consistent with assay results.
	If no site visits have been undertaken indicate why this is the case.	

Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The mineralised domain at Estoril has been broadly defined using a combination of geological and low grade cut-off criteria based on available drillhole information. A lower nominal cut-off grade of 0.1% Cu which typically coincided with a 0.1 g/t Au cut-off (effectively the mineralised alteration halo) was applied. Some proportion of lower grade material is inevitably included as internal dilution in order to preserve overall continuity of the mineralised zones. The mineralisation interpretation used in this estimate was an attempt to encompass the complete mineralised distribution and produce a model that reduces the risk of conditional bias often introduced where the constraining interpretation and data selection is based on a significantly higher grade than the natural geological cut-off. Criteria used in defining the mineralised domain can be summarised as follows: o Determine a nominal low grade "geological" cut-off to assist in defining mineralised outlines;
		 Incorporate lithology, alteration, veining and mineralisation characteristics where available; No minimum width or downhole length criteria to be applied; No internal dilution or edge dilution criteria to be applied.
	Nature of the data used and of any assumptions made.	Univariate statistical analysis was carried out on 5 metre composites for copper, gold, molybdenum, zinc and lead to evaluate the population distribution for the mineralised domain and to determine whether a high grade assay cut were required. The copper and gold coefficient of variance for Estoril is 0.56 and 1.46 respectively indicating a population having low variability. This was used to support the use of Ordinary Kriging as an appropriate method of estimation of a global resource.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The nature and extent of the mineralised domain comprising the Estoril project is consistent with the geological models for the other projects comprising the Gilmore Project Area. Consequently, no alternative interpretations have been considered.
	The use of geology in guiding and controlling Mineral Resource estimation.	Lithological, structural, alteration and weathering parameters along with a mineralizing indicator grade were used to define a single wireframe that encapsulated the known extents of the mineralization. This wireframe was used to constrain the interpolation of the various elements.
	The factors affecting continuity both of grade and geology.	The nature, extent and intensity of porphyry-related alteration and proximity to the brittle-ductile structures comprising the Gilmore Fault Zone have a dominant influence on the mineralization grade and geology.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The mineralized domain at Estoril is a steeply inclined tabular-shaped body measuring 750 metres along strike, 110 metres in width (plan) and extends 250

		metre	es vertically beneath the surface.						
Estimation and	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a	Variography has been used to analyse the spatial continuity within the mineralised							
modelling		zone and to determine appropriate estimation inputs to the interpolation process.							
lechniques		All variogram modelling was conducted in Surpac 6.0.3.							
	computer assisted estimation method was chosen include a	Vario	ography was calculated for copper, g	gold and mol	ybdenum for	The Dam,			
	description of computer software and parameters used.	Mand	amah and Yiddah prospects. Due t	o the lower r	number of co	mposite data for			
		Cuin	geral and Estoril, it was decided mo	ore appropria	te to adopt tr	ne variography for			
		mand	aman for these two prospects. This	s was conside	ered suitable	given the close			
	proximity and similar statistical properties of the three prospects. It was considered								
			a series of varving unstable models	due to low ni	umbers of sp	arsely spaced			
		composites.							
		Grade interpolation was carried out using Ordinary Kriging (OK) for the mineralised							
		domain using the uniquely coded 5m downhole composite data specific to that							
		domain.							
		Estimation search parameters are summarised in the table below.							
			Prospect	Estoril	Estoril				
				Cu	Au				
			Search Type	Ellipsoid	Ellipsoid				
			Max No, of Adj. Empty Octants	-	-				
			Min Number of Composites	3	3				
			Max Number of Composites	16	16				
			Search Distance Major Axis (m)	250	250				
			Bearing of Major Axis	170	170				
			Plunge of Major Axis	0	0				
			Dip of Semi-Major Axis	-57	-57				
			Major / Semi-Major Axis Ratio	1.5	1.5				
			Major / Minor Axis Ratio	1.5	1.5				
			No. of X Descretisation	4	4				
			No. of Y Descretisation	5	5				
			No. of Z Descretisation	2	2				

	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The 2008 Mineral Resource estimate was the first estimate for the Estoril deposit.						
	The assumptions made regarding recovery of by-products.	No assumptions were made regarding the recovery of by-products.						
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	No estimation of potentially deleterious elements was undertaken.						
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 Data spacing was the primary consideration taken into account when selecting an appropriate estimation block size. The most common drillhole spacing is approximately 100 metres (north-south) x 50 metres (east-west) but is variable and can range from less than 40 metres and up to 200 metres. The metrics defining the Estoril block model are tabulated below. 						
			Туре	Y	Х	Z		
			Minimum Coordinates	6210000	537700	-200		
			Maximum Coordinates	6211000	538500	300		
			User Block Size	50	20	10		
			Min. Block Size	25	10	5		
			Rotation	0	0	0		
	Any assumptions behind modelling of selective mining units.	Modelling was not reported to take into account the dimensions of selective mining units.						
	Any assumptions about correlation between variables.	No correlation analysis was undertaken and consequently, no correlation relationships were used in the Resource estimation.						
	Description of how the geological interpretation was used to	Lith	ological, structural, alterati	on and weath	ering paran	neters a	long with a	
	control the resource estimates.	mineralizing indicator grade were used to define a single wireframe that						
		encapsulated the known extents of the mineralization. This wireframe was used to						
	Discussion of basis for using or not using grade cutting or capping.	Constrain the interpolation of the various elements. Tabulated statistics and probability plots were examined and no potential outliers were found for the Estoril project. Consequently, no grade cutting or capping was						
		undertaken.						
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The modelled estimates were compared to composite grades in order to detect any significant biases within the resulting block model.						
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The	e tonnages have been estir	nated on a dr	y basis.			

Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Estoril resource has been reported to a 0.2%, 0.3%, 0.4% and 0.5% Cu Equivalent cut-off to a depth of 300m below surface to reflect an open pit mine scenario for large scale/ low grade disseminated porphyry style mineralisation. Copper equivalents have been calculated using the formula Cu Equiv (%) = ((Cu (g/t)) + (Au (g/t)*67.515/0.0085))/10000). The prices used were US\$8500/t copper and US\$2100/oz gold. Recoveries range from 80 to 94% for copper and 50 to 73% for gold based on preliminary copper flotation testwork.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource for Estoril has been reported assuming open pit mining techniques would be implemented in the event the project is shown to be economically viable on a combined or stand alone basis.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	In 2008, a suite of drill core samples from the Yiddah, Mandamah, Dam, Cullingerai and Estoril Porphyry Copper-Gold deposits were sent for preliminary metallurgical testwork for the production of a copper concentrate at AMMTEC laboratories in Perth. Samples were divided into high grade and low grade. An additional low grade bulk sample was also tested. Flotation testing demonstrated that copper recoveries of over 90% could be achieved at marketable concentrate grades over 20% Cu and in all cases the copper floated exceedingly quickly. Recoveries range from 80 to 94% for copper and 50 to 73% for gold.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors or assumptions (eg acid mine drainage considerations) have been incorporated into the resource estimate.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and	Specific gravity values have been based on measurements of individual core samples conducted by on site personnel using the Archimedes Principle.

	representativeness of the samples.	
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	The procedure used is suitable for non-porous or very low porosity samples, which can be quickly weighed in water before saturation occurs.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The assigned density value represent the mean value for the given data set was assigned to be 2.72 for Estoril (fresh).
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The resource classification criteria used for the Mandamah resource model is; Geological continuity and volume models. drill spacing and mining information. Modelling technique. Estimation properties. The classification also considers the likely potential for economic development of the project using open cut mining methods.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The criteria used to determine the classification are considered by the Competent Person to have been reasonably applied.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified into the confidence category of Inferred according primarily to sample density and geological confidence, and reflects the Competent Person's view on the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The inaugural resource estimate for Estoril was completed by Cube consulting in 2008 and subsequently by independent consultant Mr Ross Corben in 2017. There has not been any material change to the 2008 resource estimate. It was concluded that the model is a reasonable reflection of the current understanding of the geological and structural controls of the mineralisation in the project area and copper and gold grades based on the available drill hole assay data
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates.

The esti sho Doc prov	e statement should specify whether it relates to global or local timates, and, if local, state the relevant tonnages, which ould be relevant to technical and economic evaluation. ocumentation should include assumptions made and the ocedures used.	The statement relates to a global estimate of tonnes and grade.
The esti ava	ese statements of relative accuracy and confidence of the timate should be compared with production data, where ailable.	No mining activities have been undertaken at Estoril and consequently, it is not possible to reconcile production data against the Mineral Resource Estimate.

Hole ID	Hole Type	Max_Depth	AMG_East	AMG_North	RL	Year	Company
ESAC001	AC	75	538100	6210200	240	2004	GOLDMINCO
ESAC005	AC	83	538100	6210600	240	2004	GOLDMINCO
ESAC007	AC	66	537900	6210784	240	2004	GOLDMINCO
ESAC012	AC	86	538200	6210400	240	2004	GOLDMINCO
ESAC015	AC	78	538100	6210300	240	2005	GOLDMINCO
ESAC017	AC	78.5	538200	6210300	240	2005	GOLDMINCO
ESAC018	AC	81	538000	6210500	240	2005	GOLDMINCO
ESAC019	AC	91	538100	6210500	240	2005	GOLDMINCO
ESAC023	AC	74	538000	6210700	240	2005	GOLDMINCO
ESD001	DDH	315	537979	6210560	240	2005	GOLDMINCO
ESD002	DDH	315	538050	6210200	240	2005	GOLDMINCO
ESD003	DDH	278	537932	6210540	240	2005	GOLDMINCO
ESD005	DDH	453.5	537975	6210443	240	2005	GOLDMINCO
ESD006	DDH	395.6	537897	6210650	240	2006	GOLDMINCO
ESRC002	RC	189	537902	6210780	240	2005	GOLDMINCO
ESRC003	RC	222	537853	6210760	240	2005	GOLDMINCO
ESRC005	RC	102	538036	6210582	240	2005	GOLDMINCO
MHAC277	AC	77	538000	6210600	240	2001	AURIONGOLD
MHAC486	AC	85	538200	6210200	240	2002	AURIONGOLD
MHAC487	AC	90	538100	6210400	240	2002	AURIONGOLD
Drillholes used in the Estoril resource model.

JORC 2012 TABLE 1 GILMORE PROJECT – Culingerai

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling techniques undertaken by previous owners include core sampling of NQ2 and HQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond drilling was used to obtain 5,985 one metre; 392 two metre and 348 four metre samples along with significantly lesser quantities of other sample intervals varying from 2 metres to 1 metre. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 280 two metre samples and 112 one metre samples with significantly lesser quantities of other sample intervals varying from 4 metres to 1 metres. RAB drilling was used to obtain 8 three metre, 1 one metre and 1 thirtynine metre samples. AC drilling was used to obtain 1,470 two metre, 591 four metre and 22 one metre samples.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The drilling database for the Culingerai project comprises the results from 72 air core (AC) holes totalling 5,322 metres; 16 air core with diamond tails (ACD) holes totalling 5,548.6 metres; 4 diamond drill holes (DDH) totalling 1,231.4 metres; 3 rotary air blast (RAB) holes totalling 246.8 metres and 3 reverse circulation (RC) holes totalling 462 metres. A total of 57 air core (AC), 3 reverse circulation (RC) and 20 diamond (DDH, ACD, RCD) holes were used as part of the resource estimate.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DDH – core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. RC/AC/RAB sample quality is assessed by the sampler by visual approximation on sample recovery and if the sample is dry, damp or wet.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	It is assumed that appropriate measures were taken by Goldminco to maximise sample recovery, however documentation is incomplete.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade is known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Project database records contain varyingly detailed geological logs of all drilling products describing regolith, colour, weathering, texture, grain size, principal and secondary lithologies along with qualitative and quantitative assessments of alteration, sulphide minerals, veining, non-sulphide minerals and remarks. The level of detail logged complies with the Inferred Mineral Resource classification for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	Entire DD core and RC/AC/RAB chip samples were geologically logged by qualified geologists.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond drillcore of both NQ2 and HQ3 size from drilling by Goldfields and Goldminco was sawn in half by a diamond bladed core saw and half core was submitted for assay.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Reverse circulation drilling samples were split by riffle splitters with a sample of between 3 and 5 kilograms submitted to the laboratory.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns. Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized.

Criteria	JORC Code Explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	No records as to the use of duplicate and check sampling protocols and activities are evident in the Goldminco database.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the porphyry and related styles of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Goldfields samples of aircore and half core were analysed by Analabs Orange for Au by fire assay (F614) with repeats approximately every 10 samples and second splits every 20 samples. Cu, Pb, Zn, Mo, Fe (and As for aircore samples) were also analysed by Analabs Orange using technique A102. Goldfields standards were submitted every 50 samples for quality assurance and control. Goldminco samples were analysed for Au by fire assay with AAS finish (FAA505) at SGS West Wyalong. Repeats and second splits were analysed every twenty or so samples. A separate small subsample was sent to the SGS laboratory in Townsville for Cu, Pb, Zn, As, Ag, Mo and S analysis by ICP40Q using 4 acid digestion and ICP21Q for when elements are above normal detection limits. Goldminco aircore and half core samples were sent with standards every 50 samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Goldfields standards were submitted every 50 samples for quality assurance and control. A program of external quality control (QC) and quality assurance (QA) has been applied by Goldminco for the Gilmore Project to check for contamination, accuracy and precision. Certified standards were inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The available QAQC assay data for the project was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard.

Criteria	JORC Code Explanation	Commentary
		The drill core from 2 diamond drill holes, TCLD001 and TCLD003 which intersected significant mineralisation were checked by the Competent Person.
	The use of twinned holes.	There are no known twinned holes drilled for the Mineral Resource.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar surveys, where disclosed, were undertaken using GPS technology. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot, gyroscopic and north seeking gyroscopic instruments.
	Specification of the grid system used.	Collar and down hole azimuths used for the Culingerai Resource interpretation and estimation is based on AGD 66, Zone 55 datum. This was selected as all historical survey data were stored in AGD 66.
	Quality and adequacy of topographic control.	The drill hole collars were surveyed using GPS technology and these were used to build the topographic surface which is relatively flat.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The holes used for the resource estimation were drilled over approximately 1000 metres strike length to a maximum vertical depth of 350 metres. The drill sections range in spacing from 50 metres over 150 metres of strike in the southern zone to 100 metres over 500 metres of strike in the northern zone, with each section having 2 or more holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined between 57 and 65 (23 holes) and vertically (61 holes). 22 of the moderate to steeply inclined holes were drilled towards the ENE (63 degrees) relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the strike of the Culingerai mineralized zone and intercept it obliquely at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the drilling was oriented perpendicular to the general strike of the Culingerai deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Cube Consulting was supplied by Goldminco with up to date graphs summarising the results of historic (in house) and current certified standards and laboratory duplicates. Blanks were not inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. For drilling undertaken by Goldminco, a certified standard was inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The available QAQC assay data for the project to the end of June was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard. A further assessment of the database was undertaken by the Competent Person. No significant errors were found and it is considered that the data management processes in place are robust and adequate and believes that the database is an accurate representation of the project drilling data.

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status Type, reference name/number, location an including agreements or material issues wi such as joint ventures, partnerships, overri- native title interests, historical sites, wilderr park and environmental settings.	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Culingerai deposit is located approximately 30 kilometers northwest of the town of Temora in central New South Wales, Australia. It falls completely within the confines of Exploration License EL6845 held by LinQ Minerals Limited. The title is for Group 1 minerals and was granted on 03 August 2007. The expiry date is 03 August 2028. In addition to the statutory royalties payable to the New South Wales Department of Primary Industries for the right to extract and use the State's mineral resources, a portion of EL6845 (referred to as EL 2151) has an equitable 12.5% net profit interest royalty agreement with RG Royalties LLC. This area includes the Mandamah, Culingerai and Estoril deposits.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Culingerai prospect was identified by Placer Exploration (in joint venture with Gold Mines of Australia) in EL2151 from regional aircore traverses during the late 1990's. This work outlined an area of copper/gold anomalism which was followed up by 2 short RC holes. Gold Mines of Australia went into receivership in 2000, when Goldfields Exploration (and subsequently named Aurion Gold Exploration) acquired the tenement. Goldfields/Aurion Gold drilled infill aircore holes, 2 RC holes and 4 diamond holes between 2000 and 2002. EL2151 was farmed out to Goldminco Corporation in 2004, and in 2007 the EL was grouped with the other Temora project ELs into a new single EL6845. Early in 2008, Goldminco drilled infill aircore holes to the south and west of the Culingerai deposit which were used, along with all historic drilling, to estimate a maiden resource in September 2009 and 2011, which contributed to an updated resource that was estimated in November 2012. Sandfire Resources NL acquired the project and EL6845 from Goldminco (then a wholly owned subsidiary of Straits Resources Limited) in October 2015. No further exploration drilling was completed at Culingerai by Sandfire. The Gilmore Project (previously known as the Temora Project) together with the drill database and other historical data on the project, was acquired by LinQ Minerals Limited from Sandfire Resources on 13 July 2023.

Geology	Deposit type, geological setting and style of mineralisation.	The Culingerai copper-gold porphyry system is covered by up to 50 metres of alluvium and comprises copper-gold mineralisation within a sequence of fine grained volcaniclastic sediments including bedded sandy volcaniclastic tuffs, fragmental breccias and rare inter-collated fine-grained coherent flow-banded feldspar-phyric lavas. The volcanic pile has subsequently been intruded by a sequence of diorite and monzodiorite dykes. Typical porphyry style alteration zonation has been recognized at Culingerai. The propylitic assemblage (chlorite-pyrite-epidote-carbonate ± albite +/- sericite) occurs outboard of the main chalcopyrite zone, whereas higher-grade chalcopyrite mineralization is associated with a weak potassic assemblage (magnetite-K-feldspar-biotite ± chlorite), which is best developed in monzodiorite porphyry intrusives. Mineralisation appears to correlate spatially with strong prograde magnetite alteration. A late weak phyllic wash of sericite and pyrite ± carbonate and chlorite overprints both the propylitic and potassic alteration zones. Phyllic alteration along the Gilmore Fault Zone and associated structures (e.g. at Yiddah). Mineralization generally dips approximately 60 degrees to the WSW, and strikes NNE parallel to the regional structural fabric. Two distinct styles of sulphide mineralization occur at Culingerai; porphyry-style sheeted and stockwork quartz vein systems to the north, and high-grade breccia hosted mineralization to the south. Gold occurs with copper in the northern zone, but there is little gold in the southern zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – Culingerai.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The reported assays are weighted for their assay interval width. The majority of the assay interval widths are 1 metre, but this weighting does take into account the non 1 metre intervals and weights the average assay results accordingly.

	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No exploration results have been reported in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No exploration results have been reported in this release.

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Plan view of the drill hole collar and hole trace for Culingerai, coloured by Cu. Mineralized Envelope DTM edges shown in white
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	W-E interpreted geological cross section along TCLD003 and TCLD004, Culingerai Prospect, with significant intersections of both breccia hosted and porphyry style mineralization.

		Corer Sam @ 0.17% Cu, Set @ 0.17% Cu, Use of the core infill Breccia infill Diorite Breccia infill Corer Sam @ 0.17% Cu, Use of the core infill Diorite Breccia infill Corer Som @ 0.17% Cu, Ones Som @ 0.17% Cu, Ones Som @ 0.27% Cu, Ones Source Ones Source Ones Ones Source Ones Source Ones Source Ones Source Source
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting is considered by the Competent Person to be balanced and all relevant results have been disclosed for this current phase of exploration.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary metallurgical test work for five deposits from the Temora area, including Culingerai, was completed by AMMTEC, Perth, during the period September 2008 to January 2009. Composites were prepared from single drillholes from each of the five deposits. Grinding tests on the composites were within the range seen for porphyry deposits in Arizona (USA and British Columbia (Canada). Due to a wide range of alteration styles across the Temora deposits, resulting in differences in sample hardness, a wide variation in grind time was necessary to achieve this size range across

		individual deposits, with relatively hard ore from Culingerai requiring longer grind times. Flotation testing on the composites clearly demonstrated that at the right grind and reagent regime, copper recoveries of over 90% could be achieved at marketable concentrate grades of over 20%Cu and in all cases the copper floated exceedingly quickly.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Continue infill drilling within the currently modelled resource outlines in order to increase the confidence in the geological and weathering models as well as establish grade continuity; Continue with resource definition drilling to test strike potential; Continue with district exploration incorporating current understanding of geological, structural and mineralisation controls at the existing Temora Prospects; Expand and maintain an auditable quality assurance system for all ongoing data collection; Continue with collection of SG measurements, and Additional metallurgical test work to be undertaken as a routine part of exploration.

Section 3: Estimation and Reporting of Mineral Resources

Criteria		Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	The database used for the Culingerai resource modelling and estimation was extracted from the Companies Datashed database which is a professional relational SQL database management package. Datashed is an industry recognized data management system that utilizes rigorous data validation procedures during data entry along with enhanced security and flexible reporting to protect the exploration records.
	Data validation procedures used.	For the Mineral Resource, data tables were exported from the SQL database as comma separated files (CSV's) using export tools embedded with the database management system. These CSV files were then imported into a standalone Access database for the sole purpose of the estimation. The project records extracted from the master database have been checked and validated by an independent expert who found the database to be clean, consistent and free of obvious errors.

Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Several project site visits have previously been undertaken by the Competent Person to verify drill hole collar locations and visual grade intersections consistent		
		with assay results.		
	If no site visits have been undertaken indicate why this is the case.	n/a		
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Fresh rock hosted porphyry copper-gold mineralization at Culingerai is concealed by Quaternary aged transported cover and insitu weathered basement to depths approaching 100m. The weathered bedrock horizon hosts supergene enriched copper and gold mineralization. Copper-gold mineralization occurs in all lithologies and alteration styles without a clear geological boundary within the fresh rock environment. Therefore, the interpretation methodology was to define the boundaries between the transported oxide, weathered basement oxide and fresh rock interfaces.		
	Nature of the data used and of any assumptions made.	 Two planar sub-horizontal digital terrane models (dtm's) were created in Surpac for the base of transported cover and base of weathering horizons. Mineralization at Culingerai is divided into northern and southern zones based on mineralization style and drill spacing. Mineralization to the south is dominated by the steeply dipping high grade copper breccia, whereas the northern zone is characterised by more typical vein hosted porphyry Cu-Au style mineralization. At present, a gap in drilling on the order of 350m separates the northern and southern zones. Each of the Culingerai north and south sulphide zones contains a higher grade copper and gold mineralised core. Due to the wide drill spacing and limited number of drill holes, wireframes equal to 0.45% Copper equivalent were created to assist with the grade estimation for gold and copper respectively. The 4,500ppm Copper equivalent threshold was considered the best representation of the higher grade cores to both northern and southern Culingerai zones. 		
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The nature and extent of the mineralised domain comprising the Culingeral project is consistent with the geological models for the other projects comripsing the Gilmore Project Area. Consequently, no alternative interpretations have been considered.		
	The use of geology in guiding and controlling Mineral Resource estimation.	Two grade-based wireframes interpreted to confine the mineralization in the northern and southern zones were used to constrain the estimation. The base of transported overburden and base of weathering surfaces were also used to further domain these solids.		

	The factors affecting continuity both of grade and geology.	The nature, extent and intensity of porphyry-related alteration and proximity to the		
		brittle-ductile structures comprising the Gilmore Fault Zone have a dominant		
		influence on the mineralization grade and geology.		
Dimensions	The extent and variability of the Mineral Resource expressed as	The mineralized domains at Culingerai are sub-horizontal tabular-shaped solids		
	length (along strike or otherwise), plan width, and depth below	measuring 1150 metres along strike, 230 metres in width (plan) and extends 320		
	surface to the upper and lower limits of the Mineral Resource.	metres vertically beneath the surface.		
Estimation and	The nature and appropriateness of the estimation technique(s)	Estimates were calculated for Cu-Au-Mo-Pb-Zn and S within both the oxide and		
modelling	applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	sulphide zones. Ordinary kriging was used to estimate oxide Au and sulphide Au-		
techniques		Cu-Mo while inverse distance weighting was used to estimate oxide Cu-Pb-Zn-S		
		and sulphide Pb-Zn-S.		
		All modeling was conducted using Surpac Version 6.2.2 software.		
		Histogram analysis followed by 3D spatial analysis were the primary methods used		
		to determine whether high grade cuts were required.		
		Variography was conducted on the composites for for all the elements modelled,		
		using the Surpac variogram mapping tool.		
		The gold downhole variography within the oxide domain showed a nugget		

component of 40%. The maximum direction of continuity was observed to be in the along strike direction 0° towards 160°, with the across strike direction 0° towards

The copper downhole variography within the sulphide domain indicates a nugget component of 18%. The maximum direction of continuity was observed to be in the along strike direction 0° towards 160°, with the secondary direction of continuity at -

The gold downhole variography within the sulphide domain indicates a nugget component of 28%. The maximum direction of continuity was observed to be in the along strike direction 0° towards 160°, with the secondary direction of continuity at -

The molybdenum downhole variography within the sulphide domain indicates a nugget component of 20%. The maximum direction of continuity was observed to be in the along strike direction 0° towards 150°, with the secondary direction of

The ordinary kriged search routine parameters used for the oxide gold and copper,

Oxide Cu-Mo-Pb-Zn-S

Ellipsoid

4

molybdenum, lead, zinc and sulphur interpolation are tabulated below:

Oxide_Au

Ellipsoid

4

250° as the secondary direction of continuity.

60° towards 250°.

60° towards 250°.

Estimate

Search Type

Min Number of

continuity at -60° towards 250°.

	Max Number of	16		16		
	Search Distance Ma	ajor ₂₀₀		200		
	Bearing of Major Ax	is 160		160		
	Plunge of Major Axi	s 0		0		
	Dip of Semi-Major	0		0		
	Major / Semi-Major	2		2		
	Major / Minor Axis	10		10		
- - 	Within the sulphide zone, Au-Cu-Mo were estimated by ordinary kr Zn-S by inverse distance squared. Separate Au-Cu estimates were the north and south mineralised zones. The search routine parame porthern zone are listed in the table below:					
	Estimate	north_Au1	north_Au2	north_Cu1	north_Cu2	
	Search Type	Ellipsoid	Ellipsoid	Ellipsoid	Ellipsoid	
	Min Number of Composites	4	4	4	4	
	Max Number of Composites	16	16	16	16	
	Search Distance Major Axis (m)	200	200	200	200	
	Bearing of Major Axis	160	160	160	160	
	Plunge of Major Axis	0	0	0	0	
	Dip of Semi-Major Axis	-60 to 250	-60 to 250	-60 to 250	-60 to 250	
	Major / Semi-Major Axis Ratio	1.5	1.5	1.5	1.5	
	Major / Minor Axis Ratio	1.5	1.5	1.5	1.5	
	The search routine paran	neters for the r	orthern zone	are listed in the	table below:	
	Estimate	south_Au1	south_Au2	south_Cu1	south_Cu2	
	Search Type	Ellipsoid	Ellipsoid	Ellipsoid	Ellipsoid	

	Min Com	Number of posites	4	4	4	4
	Max Com	Number of nposites	16	16	16	16
	Sea Majo	rch Distance or Axis (m)	100	100	100	100
	Bea	ring of Major Axis	160	160	160	160
	Plun	nge of Major Axis	0	0	0	0
	Dip Axis	of Semi-Major	-90	-90	-90	-90
	Majo Axis	or / Semi-Major Ratio	1.5	1.5	1.5	1.5
	Major / Minor Axis 5 Ratio A single pass ordinary kriged mo		5	5	5	5
			riged molybden	enum and inverse distance squared lead-zinc		
	and s	sulfur estimate was	only applied to	blocks that contained a copper estimate.		per estimate.
	The s	search routine parar	neters are tabu	lated below:		
		Estimate		Sulphide_Mo	Sulphid	e_Pb-Zn-S
		Search Type		Ellipsoid	Ellipsoid	
		Min Number of Cor	nposites	4	4	
		Max Number of Co	mposites	16	16	
		Search Distance M	ajor Axis (m)	200	200	
		Bearing of Major A	xis	150	160	
	Plunge of Major Axis Dip of Semi-Major Axis		is	0	0	
			Axis	-60 to 240	-60 to 25	0
		Major / Semi-Major	Axis Ratio	1.5	1.5	
		Major / Minor Axis	Ratio	1.5	1.5	
The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	An In 2008 0.37g	nferred Mineral Reso and reported at a 0 g/t Au was estimated	ource Estimate .25% CuEq cut d for the Culing	was completed -off. A total of 8 erai deposit.	by Cube Co 3.7Mt at 0.28	onsulting in % Cu and

	The assumptions made regarding recovery of by-products.	No assumptions were made regarding the recovery of by-products.						
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Estimation for Sulphur which may be used to assess potentially deleterious effects was undertaken.						
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	The block model cell size chosen for this model was driven by the nature of the mineralization and drill spacing. The resource has been drilled over approximately 900m strike length on drill sections spaced at approximately 100m centres with generally one to four holes per section. The metrics of the Culingeral block model are tabulated below:						
			Туре	Y	X	Z		
			Minimum Coordinates	6213750	536000	-117		
			Maximum Coordinates	6214900	536900	233		
			User Block Size	50	20	10		
			Min. Block Size	25	10	5		
			Rotation	0	0	0		
	Any assumptions behind modelling of selective mining units.	Modelling was not reported to take into account the dimensions of selective mining units.						
	Any assumptions about correlation between variables.	No (relat	correlation analysis was ur tionships were used in the	ndertaken and Resource es	d conseque timation.	ntly, no d	correlation	
	Description of how the geological interpretation was used to control the resource estimates.	Two grade-based wireframes interpreted to confine the mineralization in the northern and southern zones were used to constrain the estimation as hard boundaries. The base of transported overburden and base of weathering surfaces were also used to further domain these solids.						
	Discussion of basis for using or not using grade cutting or capping.	Statistical analysis of the nature and distribution of the various elements modelled was undertaken and indicated there to be no need to apply any high-grade cuts.						
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Visual sectional and flitch validation on computer screen was conducted along w the block model cell volume vs the solid volume percentage variance checks for the Culingerai model. No swath plots were constructed as the resource is still at a preliminary stage and was only classified as Inferred.						
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry basis.						
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Equ scer	Culingerai resource has b ivalent cut-off to a depth of nario for large scale/ low gr	een reported 350m below ade dissemir	to a 0.2%, surface to nated porph	0.3%, 0. reflect a lyry style	4% and 0.5% Cu n open pit mine mineralisation.	

		Copper equivalents have been calculated using the formula Cu Equiv (%) = ((Cu $(g/t)) + (Au (g/t)*67.515/0.0085))/10000$). The prices used were US\$8500/t copper and US\$2100/oz gold. Recoveries range from 80 to 94% for copper and 50 to 73% for gold based on preliminary copper flotation testwork.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource for Culingerai has been reported assuming open pit mining techniques would be implemented in the event the project is shown to be economically viable on a combined or stand alone basis.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	In 2008, a suite of drill core samples from the Yiddah, Mandamah, Dam, Culingerai and Estoril Porphyry Copper-Gold deposits were sent for preliminary metallurgical testwork for the production of a copper concentrate at AMMTEC laboratories in Perth. Samples were divided into high grade and low grade. An additional low grade bulk sample was also tested. Flotation testing demonstrated that copper recoveries of over 90% could be achieved at marketable concentrate grades over 20% Cu and in all cases the copper floated exceedingly quickly. Recoveries range from 80 to 94% for copper and 50 to 73% for gold.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors or assumptions (eg acid mine drainage considerations) have been incorporated into the resource estimate.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Specific gravity values have been based on measurements of individual core samples conducted by on site personnel using the Archimedes Principle. The assigned density values represent the mean value for the given data.

	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	The model is divided into three density zones, which are defined by the base of transported cover (to approximately 190m RL), the base of weathering (to approximately 160m RL) and fresh rock occurring below the weathered oxide zone as observed in drilling.						
	Discuss assumptions for bulk density estimates used in the	The	specific gravity	values assigned to	each domain are ta	abled below:		
	evaluation process of the different materials.		Prospect	Rock Type	oxide attribute	density		
				Transported	3	2.0		
			Culingerai	Oxide	2	2.2		
				Fresh	1	2.76		
Classification	Varying confidence categories.	The resource classification criteria used for the June 2011 Culingerai resourc model is based on drill spacing and geological knowledge and confidence. All material at Culingerai is classified as Inferred. The classification also considers the likely potential for economic developmer the project using open cut mining methods.						
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Person to have been reasonably applied.						
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified into the confidence category of Inferred according primarily to sample density and geological confidence and reflects the Competent Person's view on the deposit.						
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	An audit of the resource estimate was undertaken by independent consultant Mr Ross Corben in 2017. There has not been any material change to the 2012 resource estimate. It was concluded that the model is a reasonable reflection of the current understanding of the geological and structural controls of the mineralisation in the project area and copper and gold grades based on the available drill hole assay data						
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the	The 201 Res Res	Mineral Resour 2 edition of the A ources and Ore ources estimates	ces has been repo Australasian Code f Reserves and refle s.	rted in accordance v for Reporting of Exp acts the relative accu	with the guidelines of the loration Results, Mineral uracy of the Mineral		

estimate.	
The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statement relates to a global estimate of tonnes and grade.
These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No mining activities have been undertaken at Culingerai and consequently, it is not possible to reconcile production data against the Mineral Resource Estimate.

Hole_ID	Hole_Type	Max_Depth	AMG_East	AMG_North	RL	Company
BMAC091	AC	58	536362.19	6214634	232	GMA
BMAC098	AC	70	536688.94	6213993.2	235	GMA
BMAC125	AC	66	536280	6214770	233.5	GMA
BMAC126	AC	65	536200	6214910	233.5	GMA
BMAC127	AC	78	536530	6214730	233.5	GMA
BMAC128	AC	72	536440	6214680	233.5	GMA
BMAC129	AC	68	536270	6214600	233.5	GMA
BMAC130	AC	70	536180	6214550	233.5	GMA
BMAC131	AC	61	536410	6214500	233.5	GMA
BMAC132	AC	67	536460	6214340	234	GMA
BMAC133	AC	77	536070	6214430	233.5	GMA
BMAC134	AC	90	536460	6213940	240	GMA
BMAC150	AC	78	535880	6214530	240	GMA
BMAC152	AC	63	536460	6213940	234	GMA
BMAR159	RC	132	536273	6214595	233.5	GMA
BMAR160	RC	150	536380	6214640	233.5	GMA
MHAC013	AC	72	536800	6214300	240	GOLDFIELDS/AURION
MHAC014	AC	72	536700	6214300	232	GOLDFIELDS/AURION
MHAC015	AC	72	536600	6214300	232	GOLDFIELDS/AURION
MHAC016	AC	65	536500	6214300	234	GOLDFIELDS/AURION

MHAC017	AC	70	536400	6214300	234	GOLDFIELDS/AURION
MHAC018	AC	74	536300	6214300	232	GOLDFIELDS/AURION
MHAC019	AC	68	536400	6214200	232	GOLDFIELDS/AURION
MHAC020	AC	62	536500	6214200	232	GOLDFIELDS/AURION
MHAC021	AC	70	536600	6214200	232	GOLDFIELDS/AURION
MHAC022	AC	72	536500	6214400	234	GOLDFIELDS/AURION
MHAC023	AC	66	536400	6214400	232	GOLDFIELDS/AURION
MHAC024	AC	76	536300	6214400	232	GOLDFIELDS/AURION
MHAC025	AC	74	536200	6214400	233.5	GOLDFIELDS/AURION
MHAC026	AC	78	536100	6214500	233.5	GOLDFIELDS/AURION
MHAC027	AC	72	536300	6214500	233.5	GOLDFIELDS/AURION
MHAC028	AC	72	536600	6214500	232	GOLDFIELDS/AURION
MHAC029	AC	63	536500	6214500	232	GOLDFIELDS/AURION
MHAC030	AC	66	536500	6214600	233.5	GOLDFIELDS/AURION
MHAC031	AC	68	536300	6214700	233.5	GOLDFIELDS/AURION
MHAC032	AC	62	536200	6214700	233.5	GOLDFIELDS/AURION
MHAC033	AC	72	536100	6214700	233.5	GOLDFIELDS/AURION
MHAC034	AC	56	536200	6214800	233.5	GOLDFIELDS/AURION
MHAC035	AC	81	536400	6214800	233.5	GOLDFIELDS/AURION
MHAC068	AC	70	536300	6214900	233.5	GOLDFIELDS/AURION
MHAC069	AC	84	536400	6214900	233.5	GOLDFIELDS/AURION

MHAC255	AC	82	536600	6214900	240	GOLDFIELDS/AURION
MHAC257	AC	82	536600	6214700	233.5	GOLDFIELDS/AURION
MHAC258	AC	71	536750	6214500	234	GOLDFIELDS/AURION
MHAC316	AC	77	536800	6214200	240	GOLDFIELDS/AURION
MHAC321	AC	70	536800	6214000	234	GOLDFIELDS/AURION
MHAC323	AC	70	536600	6213800	234	GOLDFIELDS/AURION
MHAC324	AC	62	536550	6214000	234	GOLDFIELDS/AURION
MHAC325	AC	66	536300	6214000	235	GOLDFIELDS/AURION
MHACD060	DDH	380.4	536220	6214600	233.5	GOLDFIELDS/AURION
MHACD313	DDH	350	536300	6214460	233.5	GOLDFIELDS/AURION
MHACD423	DDH	300	536360	6214360	232	GOLDFIELDS/AURION
MHRC236	RC	180	536450	6214495	232	GOLDFIELDS/AURION
MHRCD237	DDH	201	536350	6214500	233.5	GOLDFIELDS/AURION
TCLD001	ACD	398.45	536195.977	6214634.992	233.662	GOLDMINCO
TCLD002	ACD	402.9	536277.479	6214690.554	233.768	GOLDMINCO
TCLD003	ACD	291.6	536622.088	6213947.451	234.912	GOLDMINCO
TCLD004	ACD	399.9	536580.92	6213915.14	234.825	GOLDMINCO
TCLD005	ACD	375.8	536589.25	6213984.52	234.745	GOLDMINCO
TCLD006	ACD	360.95	536652.86	6213910.32	234.892	GOLDMINCO
TCLD007	ACD	388.9	536083.15	6214577.55	233.726	GOLDMINCO
TCLD008	ACD	390.8	536355.05	6214751.26	233.678	GOLDMINCO

TCLD009	ACD	427.45	536169.66	6214716.04	232.902	GOLDMINCO
TCLD010	ACD	366.75	536236.71	6214789.04	233.425	GOLDMINCO
TCLD011	ACD	301.2	536613.17	6213881.29	234.845	GOLDMINCO
TCLD012	ACD	333.95	536684.37	6213874.52	234.897	GOLDMINCO
TCLD013	ACD	213.55	536350.24	6214237.09	234.316	GOLDMINCO
TCLD014	ACD	259.1	536426.55	6214291.39	234.383	GOLDMINCO
TCLD015	ACD	240.9	536512.87	6214355.36	234.362	GOLDMINCO
TCLD016	ACD	396.4	536614	6213824	234	GOLDMINCO
TMZAC115	AC	80	536490	6213670	235	GOLDMINCO
TMZAC117	AC	70	536440	6213800	234	GOLDMINCO
TMZAC119	AC	59	536700	6214100	234	GOLDMINCO
TMZAC120	AC	72	536600	6214100	234	GOLDMINCO
TMZAC121	AC	74	536500	6214100	234	GOLDMINCO
TMZAC122	AC	71	536400	6214100	234	GOLDMINCO
TMZAC123	AC	77	536300	6214170	234	GOLDMINCO
TMZAC124	AC	80	536200	6214300	232	GOLDMINCO
TMZAC125	AC	84	536100	6214200	235	GOLDMINCO
TMZAC127	AC	79	536200	6214100	235	GOLDMINCO

Drillholes used in the Culingerai resource model.

JORC 2012 TABLE 1 GILMORE PROJECT – Mandamah

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling techniques undertaken by previous owners include core sampling of NQ, HQ and HQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond drilling was used to obtain 3,792 two metre; 3,199 one metre and 352 four metre samples along with significantly lesser quantities of other sample intervals varying from 3 metres to 0.4 metres. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 1,186 two metre samples and 84 eighty-three point six metre samples with significantly lesser quantities of other sample intervals varying from 4 metres to 1 metres. RAB drilling was used to obtain 171 three metre samples along with significantly lesser quantities of other sample intervals varying from 9 metres to 0.5 metre. AC drilling was used to obtain 9,784 four metre and 1,646 two metre samples along with significantly lesser quantities of other sample intervals varying from 3 metres to 1 metre. ACD drilling was used to obtain 593 one metre along with significantly lesser quantities of other sample intervals varying from 1.3 metres to 0.7 metre.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The drilling database for the Mandamah project comprises the results from 130 air core (AC) holes totaling 11,680 metres; 4 air core with diamond tails (ACD) holes totaling 1,446 metres; 20 diamond drill holes (DDH) totaling 7,760.54 metres consisting of HQ-size (1,494.6 metres), HQ3-size (1,687.2 metres) and NQ size (384 metres) with size of the remaining meterage not recorded in the database; 32

Criteria	JORC Code Explanation	Commentary
		rotary air blast (RAB) holes totaling 2,132.3 metres and 7 reverse circulation (RC) holes totaling 1,327.2 metres. A total of 66 air core (AC), 4 reverse circulation (RC) and 22 diamond (DDH, ACD, RCD) holes were used as part of the resource estimate.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DDH – core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. RC/AC/RAB sample quality is assessed by the sampler by visual approximation for sample recovery and if the sample is dry, damp or wet.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	It is assumed that appropriate measures were taken by Goldminco to maximise sample recovery, however documentation is incomplete.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade is known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Project database records contain varyingly detailed geological logs of all drilling products describing regolith, colour, weathering, texture, grain size, principal and secondary lithologies along with qualitative and quantitative assessments of alteration, sulphide minerals, veining, non-sulphide minerals and remarks. The level of detail logged complies with the Inferred Mineral Resource classification for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	Entire DD core and RC/AC/RAB chip samples were geologically logged by qualified geologists.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Goldmines of Australia, 1995 ½ cut HQ3 core, 1m sample interval. Placer, 1996-1997, ½ cut HQ3 core, 2m sample interval. Goldfields/AurionGold, 2001-2002, ½ cut HQ3 and NQ2 core, 1 and 2m sample intervals. Goldminco Corporation, 2009-2011, ½ cut HQ3 and NQ2 core, whole HQ3 core where necessary due to fractured core, 1m sample interval. Sandfire Resources, 2016-2023, ½ cut HQ3 core, 1m sample intervals.

Criteria	JORC Code Explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Goldmines of Australia, 1995, Aircore-Samples collected at 4m intervals. Placer, 1996-1997, Reverse Circulation/Aircore & RAB precollars, samples collected at 2m intervals. Goldfields/AurionGold, 2001-2002, Aircore, Samples collected at 2 and 4m intervals. Goldminco Corporation, 2009-2011, Aircore precollar, samples collected at 1m interval. Reverse circulation drilling samples were split by riffle splitters with a sample of between 3 and 5 kilograms submitted to the laboratory.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns. Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	No records as to the use of duplicate and check sampling protocols and activities are evident in the Goldminco database.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the porphyry and related styles of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Goldmines of Australia submitted their diamond and aircore samples to ALS for Gold analysis by fire assay (FAEX), base metal suite analysis by (A100); and Amdel for Gold analysis by fire assay (FA3), and base metal analysis by IC2E. Placer submitted all of their samples to ALS for Gold analysis by fire assay (PM209) and base metal analysis by ICP (IC580). Goldfields/AurionGold submitted all their samples to ALS for Gold analysis by fire assay (PM209) and base metal analysis by ICP (IC581). Goldminco Corporation submitted all their samples to SGS for Gold analysis by fire assay (FAA505) and base metal analysis by ICPAES (ICP21R). Sandfire Resources submitted their samples to ALS for Gold analysis by fire assay (A422) and base metal analysis by ME-MS61

Criteria	JORC Code Explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyze the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	A program of external quality control (QC) and quality assurance (QA) has been applied for Mandamah to check for contamination, accuracy and precision. Certified standards were inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The available QAQC assay data for the project was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard. The drill core from 1 diamond drill hole, MHACD228 which intersected significant mineralisation was checked by the Competent Person.
	The use of twinned holes.	There are no known twinned holes drilled for the Mineral Resource.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.

Criteria	JORC Code Explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar surveys, where disclosed, were undertaken using GPS technology. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot, gyroscopic and north seeking gyroscopic instruments.
	Specification of the grid system used.	Collar and down hole azimuths used for the Mandamah Resource interpretation and estimation is based on GDA 94, Zone 55 datum.
	Quality and adequacy of topographic control.	The drill hole collars were surveyed using GPS technology and these were used to build the topographic surface which is relatively flat.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The holes used for the resource estimation were drilled over approximately 600 metres strike length to a maximum vertical depth of 550 metres. The drill sections are spaced approximately 100m apart with each section having 2 or more holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined between 55 and 65 (125 holes) and 85 to 90 (64). 26 of the moderate to steeply inclined holes were drilled towards the ENE (69 degrees) and 90 were drilled towards the WSW (248 degrees) relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the strike of the Mandamah mineralized zone and intercept it obliquely at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the drilling was oriented perpendicular to the general strike of the Mandamah deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. A number of early diamond dill holes are stored at the Londonderry Core farm. Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps.

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Cube Consulting was supplied by Goldminco with up to date graphs summarising the results of historic (in house) and current certified standards and laboratory duplicates. Blanks were not inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. For drilling undertaken by Goldminco, a certified standard was inserted in the sample stream prior to the samples leaving site for every 50 samples submitted for assay. The available QAQC assay data for the project to the end of June was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard. A further assessment of the database was undertaken by the Competent Person. No significant errors were found and it is considered that the data management processes in place are robust and adequate and believes that the database is an accurate representation of the project drilling data.

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mandamah deposit is located 4km south of the town of Barmedman in central New South Wales, Australia. It falls completely within the confines of Exploration License EL6845 held by LinQ Minerals Limited. The title is for Group 1 minerals and was granted on 03 August 2007. The expiry date is 03 August 2028. In addition to the statutory royalties payable to the New South Wales Department of Primary Industries for the right to extract and use the State's mineral resources,

	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	a portion of EL6845 (referred to as EL 2151) has a 12.5% net profit interest royalty agreement with RG Royalties LLC. This area includes the Mandamah, Culingerai and a portion of the Estoril deposits. There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Mandamah deposit was discovered by Gold Mines of Australia in 1995 in EL2151 by pattern aircore drilling over the prospect area, identifying a large supergene Au anomaly at the base of a transported clay horizon and basement Cu anomaly in the underlying upper saprolite zone. Further work in 1996 by joint venture partner Placer included a gradient array IP survey, downhole geophysics, petrology, and aircore, RC, and diamond drilling along 200m spaced drill sections. Intermittent and discontinuous results along strike downgraded the deposit according to Placer Exploration who withdrew from the joint venture in 1999. Gold Mines of Australia went into receivership in 2000, and Goldfields Exploration (and subsequently named Aurion Gold Exploration) acquired the tenement and drilled 4 diamond holes into the Mandamah prospect. EL2151 was farmed out to Goldminco Corporation in 2004, and in 2007 the EL was grouped with the other Temora project ELs into a new single EL6845. Since announcing a maiden resource estimate for the Mandamah porphyry Cu-Au deposit in June 2008, Goldminco Corporation completed a further two diamond core holes, TMHD001 & 002. TMHD001 tested for along strike continuations to porphyry grade copper and gold mineralization to the south of the 2008 resource. The hole was completed to a final depth of 503m. From 290 to 340m the hole intersected a package of classic porphyry quartz/magnetite/K-feldspar/chalcopyrite/molybdenite seam veins from 270 to 370m hosted by an alternating sequence of andesitic volcanics and volcaniclastics intruded by diorite porphyry. Assay results indicated two low grade porphyry intersections with the upper zone hosting a higher grade core from 299m averaging 29m @ 0.38% Cu and 0.30g/t

		Au which correlates well with the "classic" porphyry seam veins. Interestingly, the lower porphyry intersection contains strongly elevated molybdenum. Sandfire Resources NL acquired the project and EL6845 from Goldminco (then a wholly owned subsidiary of Straits Resources Limited) in October 2015. Sandfire completed three diamond core holes (TMMRD005, 022, 023). TMMRD005 was completed to test anomalous aircore results along strike north from the known mineralised system. Drilling intersected intense phyllic, sericite-pyrite-quartz altered andesitic volcaniclastic and lesser medium to fine grained plagioclase-phyric porphyry. A minor interval of porphyry-style quartz-pyrite seam veins was observed and this is interpreted to correspond with porphyry veining intersected in Templar Resource's drill hole TMHD003 (5m @ 0.13 g/t Au and 0.14% Cu from 162m) 150m south east of TMRCD005. Assays from TMRCD005 returned 12m @ 0.12% Cu from 182m including 1m @ 0.27% Cu and 0.09g/t Au from 188mTMMRD022 was completed to confirm copper and gold mineralisation within the higher grade core and returned an intersection of 165m @ 0.51%Cu & 0.37g/t Au from 168m thus confirming the grade. TMMRD023 was completed to test the north-western extension of the Mandamah copper mineralisation and failed to intersect any anomalous mineralisation. The Gilmore Project (previously known as the Temora Project) together with the
		drill database and other historical data on the project, was acquired by LinQ Minerals Limited from Sandfire Resources on 13 July 2023.
Geology	Deposit type, geological setting and style of mineralisation.	The Mandamah copper-gold porphyry deposit is covered by 50 metres of alluvium which overlies a 30m thick, partially eroded saprolite zone. Supergene gold- and copper- rich zones have formed at the alluvium/saprolite interface and at the base of oxidation. The initial mineralising event at Mandamah was a porphyry-type copper-gold system that probably formed in the Early Silurian and appears to be the same age as the host unit. The porphyry system consists of a zoned alteration system together with copper-gold bearing quartz-sulphide veins. This initial mineral system was overprinted and modified by later deformation resulting in the development of high grade copper zones.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length.	Refer to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – Mandamah.

	If the exclusion of this information is justified on the basis that the	
	information is not Material and this exclusion does not detract	
	from the understanding of the report, the Competent Person	
	should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The reported assays are weighted for their assay interval width. The majority of the assay interval widths are 1 metre, but this weighting does take into account the non 1 metre intervals and weights the average assay results accordingly.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report. Comments relating to the data aggregation methods relevant to the Mineral Resource Estimate can be found in Section 1 – "Sampling Techniques"
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
lengths	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No exploration results have been reported in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No exploration results have been reported in this release.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Mandamah Prospect – Plan

		62116600 N 62116800 N 6217200 N 6217400 N 6217400 N 6217700 N 6217700 N 6217700 N 6217700 N
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting is considered by the Competent Person to be balanced and all relevant results have been disclosed for this current phase of exploration.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary metallurgical test work for five deposits from the Temora area, including Mandamah, was completed by AMMTEC, Perth, during the period September 2008 to January 2009. Composites were prepared from single drillholes from each of the five deposits. Grinding tests on the composites were within the range seen for porphyry deposits in Arizona (USA and British Columbia (Canada). Due to a wide range of alteration styles across the Temora deposits, resulting in differences in sample hardness, a wide variation in grind time was necessary to achieve this size range across individual deposits. Flotation testing on the composites clearly demonstrated that at the right grind and reagent regime, copper recoveries of over 90% could be achieved at marketable

		concentrate grades of over 20%Cu and in all cases the copper floated exceedingly quickly.
Further work	The nature and scale of planned further work (eg tests for lateral	Continue infill drilling within the currently modelled resource outlines in order to
	extensions or depth extensions or large-scale step-out drilling).	increase the confidence in the geological and weathering models as well as
		establish grade continuity;
	Diagrams clearly highlighting the areas of possible extensions,	Continue with resource definition drilling to test strike potential;
	including the main geological interpretations and future drilling	Continue with district exploration incorporating current understanding of
	areas, provided this information is not commercially sensitive.	geological, structural and mineralisation controls at the existing Temora
		Prospects;
		Expand and maintain an auditable quality assurance system for all ongoing data
		collection.
		Continue with collection of SG measurements;
		Additional metallurgical test work to be undertaken as a routine part of exploration

Section 3: Estimation and Reporting of Mineral Resources

Criteria		Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	The database used for the Mandamah resource modelling and estimation was extracted from the companies Datashed database which is a professional relational SQL database management package. Datashed is an industry recognized data management system that utilizes rigorous data validation procedures during data entry along with enhanced security and flexible reporting to protect the exploration records.
	Data validation procedures used.	For the Mineral Resource, data tables were exported from the SQL database as comma separated files (CSV's) using export tools embedded with the database management system. These CSV files were then imported into a standalone Access database for the sole purpose of the estimation. The project records extracted from the master database have been checked and validated by an independent expert who found the database to be clean, consistent and free of obvious errors.

Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The 2011 resource estimate for the Mandamah deposit was estimated by Mr. Byron Dumpleton who was the Mineral Resource Manager for Straits Resources. Mr Dumpleton had visited the project site and had a good understanding of the project geology based on a detailed review of the mineralization in drill core and surface outcrop exposures. Several project site visits have previously been undertaken by the Competent Person to verify drill hole collar locations and visual grade intersections consistent with assay results.
	If no site visits have been undertaken indicate why this is the case.	n/a
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Fresh rock hosted porphyry copper-gold mineralization at Mandamah is concealed by Quaternary aged transported cover and insitu weathered basement to depths approaching 100m. The weathered bedrock horizon hosts supergene enriched copper and gold mineralization. Copper-gold mineralization occurs in all lithologies and alteration styles without a clear geological boundary within the fresh rock environment. Therefore, the interpretation methodology was to define the boundaries between the transported oxide, weathered basement oxide and fresh rock interfaces.
	Nature of the data used and of any assumptions made.	Three composite files were created: one for samples that were contained above the base of weathered bedrock; one for samples that were below the base of weathered bedrock, and a third for samples that were below the base of weathered bedrock and in addition, within the solid used to constrain the earlier (2011) resource estimate. Compositing was conducted down hole at 4 metre intervals for oxide and 2 metre intervals for fresh rock. 4 metre composites were used for the oxide as most holes were assayed in 4 metre intervals through this zone. Minimum composite length accepted was 2 metres for oxide and 1 metre for fresh. The composite string files contained all the elements that were estimated (Au, Cu, Mo, Zn, Pb).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The nature and extent of the mineralised domain comprising the Mandamah project is consistent with the geological models for the other projects comripsing the Gilmore Project Area. Consequently, no alternative interpretations have been considered.
	The use of geology in guiding and controlling Mineral Resource estimation.	Other than the base of transported overburden and the base of weathering, no other geological feature was used to constrain the resource
	The factors officiar continuity both of and and and and	The network and interneting of neurophysical alternation and accessing to the
-------------------------	---	---
		brittle-ductile structures comprising the Cilmore Foult Zone base a dominant
		influence on the mineralization grade and geology
Dimensions	The extent and variability of the Mineral Resource expressed as	The mineralized domains at Mandamah are sub-horizontal tabular-shaped solids
	length (along strike or otherwise), plan width, and depth below	measuring 800 metres along strike, 250 metres in width (plan) and extends 350
	surface to the upper and lower limits of the Mineral Resource.	metres vertically beneath the surface.
Estimation and	The nature and appropriateness of the estimation technique(s)	Ordinary kriging was the preferred method of estimation of copper and gold for the
modelling techniques	applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and	oxide and copper, gold and molybdenum for the fresh rock domains. Molybdenum, lead and zinc within the oxide domain was estimated by inverse distance squared
	maximum distance of extrapolation from data points. If a	as was the lead and zinc within the fresh rock domain.
	computer assisted estimation method was chosen include a	All modeling was conducted using Surpac Version 6.3 software.
	description of computer software and parameters used.	Histogram analysis followed by 3D spatial analysis were the primary methods
		used to determine whether high grade cuts were required.
		Variography was conducted on the composites for Au, Cu and Mo using the
		Surpac variogram mapping tool.
		The copper downhole variography within the oxide domain showed a nugget
		component of 7%. The maximum direction of continuity was observed to be in the
		along strike direction 0° towards 150°, with the across strike direction 0° towards
		The gold downhole variagraphy within the oxide domain showed a purget
		component of 28%. The maximum direction of continuity was observed to be in
		the along strike direction 0° towards 160° with the across strike direction 0°
		towards 250° as the secondary direction of continuity.
		The copper downhole variography for the sulphide domain indicated a nugget
		component of 3%. The maximum direction of continuity was observed to be in the
		along strike direction 0° towards 160°, with the secondary direction of continuity at
		-80°towards 250°.
		The gold downhole variography for the sulphide domain indicated a nugget
		component of 20%. The maximum direction of continuity was observed to be in
		the along strike direction 0° towards 160°, with the secondary direction of
		continuity at -80° towards 250°.
		I he molybdenum downhole variographyfor the sulpide domain indicated a nugget
		component of 17%. The maximum direction of continuity was observed to be
		direction of continuity at 80° towards 250°
		The ordinary kriged search routine parameters used for the oxide and subbide
		The ordinary knged search routine parameters used for the oxide and sulphide

b	nolybder	lybder	num	im ore inte	rpola	ation are	tabulated
d	Oxide Cu	xide u		Fresh Au	F	Fresh Cu	Fresh Mo
ວຄ	Ellipsoid	lipsoid	d	Ellipsoid	E	Ellipsoid	Ellipsoid
	4			4	4	1	4
	32	2		32	3	32	32
)	200	00		150	1	150	150
)	150	50		160	1	160	160
	0			0	0)	-20
	0			-80	-{	80	-80
	1.5	5		2.2	1	1.5	2.0
	7.0	0		3.0	3	3.0	3.0
n ne ne	nolybden listance outine pa de moly	ybder ance tine pa moly	num set arar /bde	m was con et to 300 m ameters us denum ore	nplete etres sed fo inter	ted with t s. for the ox rpolation	he same ide and are
(10)	Oxide Mo	Dxide Io		Oxide PbZn		Fresh PbZn	
ip	Ellipso	Ilipso	bid	Ellipso	bid	Ellipsoi	d
_	3			3		3	
	32	2		32		32	
0	200	00		150		150	
0	150	50		160		160	
_	0			0		0	
	0			0		-80	
5	1.5	.5		1.5		1.5	

		Major / Mir	nor Axis Ra	atio		10	10	1.5	
The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	An Inferred Mineral Resource Estimate was completed by Cube Consulting in 2008 and reported at a 0.25% CuEq cut-off. A total of 28.4Mt at 0.35% Cu and 0.40g/t Au was estimated for the Mandamah deposit.						n nd		
The assumptions made regarding recovery of by-products.	No a	assumptions	s were mad	de r	egarding th	e recovery	of by-pro	ducts.	
Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	No e	estimation o	of potentially	y de	eleterious e	lements wa	s underta	ken.	
In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Data spacing was the primary consideration taken into account when selecting an appropriate estimation block size. The most common drillhole spacing is approximately 100 metres (north-south) x 50 metres (east-west) but is variable and can range from less than 40 metres and up to 200 metres. The metrics used for the Mandamah block model are tabulated below:								
		Туре			Y	Х	Z		
		Minimum C	Coordinates	S	6216050	534900	-117		
		Maximum	Coordinate	s	6217550	535700	233		
		User Block	Size		50	20	10	_	
		Min. Block	Size		25	5 10	5 5	_	
		Rotation			() (0 0		
Any assumptions behind modelling of selective mining units.	Mod units	lelling was r s.	not reported	d to	take into a	iccount the	dimensio	ns of selective i	mining
Any assumptions about correlation between variables.	No o relat	correlation a tionships we	analysis wa ere used in	as u the	ndertaken a Resource	and consequestimation.	uently, no	correlation	
Description of how the geological interpretation was used to	Othe	er than the b	base of wea	athe	ered bound	ary, the esti	mates we	ere unconstrain	ed,
control the resource estimates.	due primarily as the mineralised system appears to be diffuse and lacking any								
	obvious nard boundaries. Statistical analysis does not show any obvious natural cut-off grade to the mineralisation and arbitrary grade boundaries tend to produce								
Discussion of basis for using or not using grade cutting or	Deta	ails of the to		d ar	re tabulated	below.	unesnoiu	•	
capping.		• D	• A	t	• Hig	gh Grade	•	No of	1
		omain	tribute		cut (ppm)		samp	les cut	
		• o xide	● A	`	• 10		•	1	
			• C	;	• 10	,000	•	2	

				ł	• b	Ρ	•	260	•	1	
				• r	• n	Z	•	350	•	1	
			• F resh	-	● U	С	•	20,000	•	3	
				•	•	М	•	300	•	3	_
				• r	• n	Z	•	2500	•	1	
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Only visual sectional and flitch validation on computer screen was along with the block model cell volume vs the solid volume percer checks for the Mandamah model. No swath plots were constructer resource is still at a preliminary stage and was only classified as							was conducte ercentage varia ructed as the as Inferred.	d nce	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry basis.									
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mandamah resource has been reported to a 0.2%, 0.3%, 0.4% and 0.5% Equivalent cut-off to a depth of 350m below surface to reflect an open pit miniscenario for large scale/ low grade disseminated porphyry style mineralisation Copper equivalents have been calculated using the formula Cu Equiv (%) = ((g/t)) + (Au (g/t)*67.515/0.0085))/10000). The prices used were US\$8500/t co and US\$2100/oz gold. Recoveries range from 80 to 94% for copper and 50 t						% Cu ne on. ((Cu copper to			
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource for Mandamah has been reported assuming open pit mining techniques would be implemented in the event the project is shown to be economically viable on a combined or stand alone basis.									
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not	In 2008, a suite of drill core samples from the Yiddah, Mandamah, Dam, Culingerai and Estoril Porphyry Copper-Gold deposits were sent for prelimi metallurgical testwork for the production of a copper concentrate at AMMTE laboratories in Perth. Samples were divided into high grade and low grade additional low grade bulk sample was also tested. Flotation testing demons								ary C An rated	

	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	that copper recoveries of over 90% could be achieved at marketable concentrate grades over 20% Cu and in all cases the copper floated exceedingly quickly. Recoveries range from 80 to 94% for copper and 50 to 73% for gold							
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors or assumptions (eg acid mine drainage considerations) have been incorporated into the resource estimate.							
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Spe san ass for	Specific gravity values have been based on measurements of individual core samples conducted by on site personnel using the Archimedes Principle. The assigned density values represent the mean value for the given data set except for Mandamah fresh which has been assigned a density of 2.75.						
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.		The procedure used is suitable for non-porous or very low porosity samples, which can be quickly weighed in water before saturation occurs.						
	Discuss assumptions for bulk density estimates used in the	The	e specific gravity	values assigned to	each domain are	tabled below:			
	evaluation process of the different materials.		Prospect	Oxidation	density				
				Transported	2.1				
			Mandamah	Oxide	2.2				
				Fresh	2.75	1			
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The resource classification criteria used for the 2024 Mandamah resource model is based on drill spacing and geological knowledge and confidence. All material at Mandamah is classified as Inferred.							
		The classification also considers the likely potential for economic development of							
		the	the project using open cut mining methods.						

	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The criteria used to determine the classification are considered by the Competent Person to have been reasonably applied.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified into the confidence category of Inferred according primarily to sample density and geological confidence, and reflects the Competent Person's view on the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The 2012 resource estimate was audited by by independent consultant Mr Ross Corben in 2017. It was concluded that the model is a reasonable reflection of the current understanding of the geological and structural controls of the mineralisation in the project area and copper and gold grades based on the available drill hole assay data. The 2024 resource estimate has incorporated additional drilling completed by Sandfire Resources and utilized similar estimation parameters to that in 2012.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statement relates to a global estimate of tonnes and grade.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No mining activities have been undertaken at Mandamah and consequently, it is not possible to reconcile production data against the Mineral Resource Estimate.

Hole Id	Hole Type	Max_Depth	GDA94_North	GDA94_East	RL	Year	Company
BMAC050	AC	90	6217141.34	535167.44	234.17	1995	GMA
BMAC051	AC	96	6217138.34	535326.19	233.91	1995	GMA
BMAC052	AC	78	6217187.34	535472.44	233.48	1995	GMA
BMAC053	AC	83	6217236.34	535623.69	233.22	1995	GMA
BMAC054	AC	84	6217289.34	535774.82	232.72	1995	GMA
LAC073	AC	96	6216731.34	535235.94	234.77	1995	GMA
LAC074	AC	102	6216764.34	535308.19	234.39	1995	GMA
LAC075	AC	94	6216796.34	535382.01	233.93	1995	GMA
LAC076	AC	99	6216829.34	535455.13	233.68	1995	GMA
LAC077	AC	88	6216862.34	535527.19	233.66	1995	GMA
LAC078	AC	93	6216891.34	535603.82	233.51	1995	GMA
LAC079	AC	91	6216925.34	535667.63	233.39	1995	GMA
LAC083	AC	84	6216363.34	535546.94	233.84	1995	GMA
LAC099	AC	88	6216958.34	535743.44	233.29	1995	GMA
LAC102	AC	86	6217115.34	535258.32	233.99	1995	GMA
LAC103	AC	107	6217162.34	535397.51	233.72	1995	GMA
LAC104	AC	100	6217212.34	535549.19	233.28	1995	GMA
LAC105	AC	96	6217334.34	535060.13	234.14	1995	GMA
LAC106	AC	102	6217365.34	535131.94	234.12	1995	GMA
LAC107	AC	88	6217397.34	535204.63	233.91	1995	GMA

LAC108	AC	96	6217428.34	535278.13	233.68	1995	GMA
LAC109	AC	95	6217460.34	535351.01	233.54	1995	GMA
LAC110	AC	93	6217492.34	535424.44	233.44	1995	GMA
LAC111	AC	90	6217523.34	535496.51	233.27	1995	GMA
LAC112	AC	90	6217554.34	535569.32	233.09	1995	GMA
LAC113	AC	75	6217586.34	535641.69	232.86	1995	GMA
LAC114	AC	89	6217617.34	535714.13	233.04	1995	GMA
LAC143	AC	96	6216907.34	535177.32	233	1995	GMA
LAC144	AC	89	6216937.34	535247.32	233	1995	GMA
LAC145	AC	96	6217037.34	535457.32	233	1995	GMA
LAC146	AC	102	6217007.34	535387.32	233	1995	GMA
LAC147	AC	88	6216977.34	535317.32	233	1995	GMA
LAC148	AC	83	6216597.34	535293.69	234.43	1995	GMA
LAC149	AC	80	6216628.34	535367.94	234.27	1995	GMA
LAC150	AC	75	6216659.34	535440.69	234.08	1995	GMA
LAC151	AC	88	6216690.34	535514.51	233.78	1995	GMA
LAC152	AC	86	6216719.34	535587.44	233.85	1995	GMA
LAC153	AC	102	6217196.34	535118.69	234.16	1995	GMA
LAC154	AC	94	6217215.34	535189.32	234.12	1995	GMA
LAC155	AC	105	6217243.34	535268.19	233.96	1995	GMA
LAC156	AC	95	6217302.34	535332.13	233.71	1995	GMA

LAC157	AC	102	6217317.34	535411.82	233.5	1995	GMA
LAC158	AC	107	6217359.34	535480.13	233.34	1995	GMA
LAC159	AC	86	6217387.34	535556.63	233.36	1995	GMA
LAC160	AC	84	6217433.34	535624.13	233.15	1995	GMA
LAC161	AC	104	6217501.33	535068.51	234.11	1995	GMA
LAC162	AC	94	6217534.33	535143.13	234.01	1995	GMA
LAC163	AC	88	6217566.33	535215.94	233.86	1995	GMA
LAC164	AC	100	6217598.33	535288.69	233.61	1995	GMA
LAC165	AC	107	6217630.33	535362.01	233.44	1995	GMA
LAC166	AC	92	6217656.33	535437.19	233.31	1995	GMA
LAC167	AC	77	6217694.33	535508.63	233.12	1995	GMA
LAC170	AC	78	6217079.34	535520.69	233.8	1995	GMA
LAC171	AC	100	6217084.34	535604.32	233.71	1995	GMA
LAC192	AC	88	6217123.34	535689.69	233.03	1995	GMA
LAC193	AC	86	6217153.34	535767.94	232.77	1995	GMA
LACD196	DDH	303.6	6217147.34	535352.79	233	1995	GMA
LD194A	DDH	417	6217163.44	535400.82	233.8	1995	GMA
LD195	DDH	307.4	6217368.94	535518.35	233.3	1995	GMA
MMBH1005	RABD	126.2	6217358.84	535337.67	233	1996	Placer
MMRH1001	RCD	426	6217118.64	535265.05	233	1996	Placer
MMRH1002	RCD	396	6217319.84	535247.86	233	1996	Placer

MMRH1006	RCD	297.7	6217494.94	535152.44	233	1996	Placer
MMRH1008	RCD	315.44	6217280.24	535155.25	233	1996	Placer
MMRX1003	RC	216	6217194.54	535463.62	233	1996	Placer
MMRX1004	RC	150	6217533.23	535245.47	233	1996	Placer
MMRX1005	RC	108	6217360.04	535340.31	233	1996	Placer
MMRX1007	RC	160	6217423.54	535236.75	233	1996	Placer
MMRH1010	RCD	300.2	6216748.74	535434.72	233	1997	Placer
MMRH1011	RCD	300.1	6216876.44	535229.04	233	1997	Placer
MMRH1012	RCD	249	6216803.24	535264.37	233	1997	Placer
MMRH1013	RCD	248.2	6216808.04	535170.9	233	1997	Placer
MMRX1009	RC	317	6216944.04	535384.51	233	1997	Placer
MHAC053	AC	80	6216467.34	535307.32	240	2001	Goldfields/AurionGold
MHAC054	AC	69	6216467.34	535407.32	240	2001	Goldfields/AurionGold
MHAC055	AC	78	6216467.34	535507.32	240	2001	Goldfields/AurionGold
MHAC056	AC	83	6216467.34	535607.32	240	2001	Goldfields/AurionGold
MHAC265	AC	76	6216567.34	535557.32	240	2001	Goldfields/AurionGold
MHAC266	AC	86	6216367.34	535657.32	240	2001	Goldfields/AurionGold
MHAC267	AC	80	6216517.34	535757.32	240	2001	Goldfields/AurionGold
MHAC268	AC	92	6216567.34	535657.32	240	2001	Goldfields/AurionGold
MHAC269	AC	81	6216677.34	535767.32	240	2001	Goldfields/AurionGold
MHACD228	ACD	357.5	6217067.34	535384.32	233	2001	Goldfields/AurionGold

MHACD312	ACD	498	6217035.34	535290.32	233	2001	Goldfields/AurionGold
MHACD421	ACD	347.8	6217157.34	535807.32	233	2002	Goldfields/AurionGold
MHACD422	ACD	341.3	6216467.34	535607.32	230	2002	Goldfields/AurionGold
MHACD573	ACD	750	6217017.34	535127.32	233	2002	Goldfields/AurionGold
TMHD001	DDH	503.6	6216964.383	535340.1161	233	2009	Goldminco Corp
TMHD002	ACD	329	6217242.4	535309.09	233.699	2011	Goldminco Corp
TMHD003	ACD	267	6217410.638	535211.364	233.958	2011	Goldminco Corp
TMMRD005	RCD	429	6217635	535100	236.5	2017	Sandfire Resources
TMMRD022	MRD	470	6217200	535595	235.34	2018	Sandfire Resources
TMMRD023	MRD	501	6217220	535155	237.13	2018	Sandfire Resources

Drillholes used in the Mandamah resource model.

JORC 2012 TABLE 1 GILMORE PROJECT – Yiddah Project

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling techniques undertaken by previous owners include core sampling of NQ2 and/or NQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, Reverse Circulation face sampling with diamond tails (RCD), open-hole percussion (PER), air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; PER, AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond drilling was used to obtain 3,373 one metre; 1,331 two metre and 90 one and a half metre samples along with significantly lesser quantities of other sample intervals varying from 3 metres to 0.4 metres. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 1,206 two metre samples and 293 one metre samples. RCD drilling was used to obtain 1,084 one metre and 305 two metre samples along with significantly lesser quantities of other sample intervals varying from 2.3 metres to 0.4 metres. RAB drilling was used to obtain 150 three metre samples along with significantly lesser quantities of other sample intervals varying from 2.8 metres to 0.3 metre. AC drilling was used to obtain 2,508 two metre and 234 four metre samples along with significantly lesser quantities of other sample intervals varying from 3 metres to 1 metre. ACD drilling was used to obtain 3,163 one metre and 170 two metre samples along with significantly lesser quantities of other sample intervals varying from 3 metres to 1 metre.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit	The drilling database for the Yiddah project comprises the results from 85 air core (AC) holes totaling 6,516.5 metres; 32 rotary percussion (RP) holes totaling

Criteria	JORC Code Explanation	Commentary
	or other type, whether core is oriented and if so, by what method, etc).	3,499.5 metres; 16 diamond drill holes (DDH) totaling 6,374 metres consisting of HQ-size (331 metres), HQ3-size (3,961.2 metres), NQ size (932.6 metres) and NQ2-size (2,377.6 metres) with size of the remaining meterage not recorded in the database; 15 rotary air blast (RAB) holes totaling 1,155.2 metres; 18 reverse circulation (RC) holes totaling 4,409.6 metres; 8 air core (ACD) holes totaling 3,641.8 metres and 1 percussion (PER) hole totaling 109.7 metres. All available drilling results from 43 drillholes (current to 30 June 2012) were used for the Yiddah resource interpretation and estimation. These holes consisted of 22 DDH, 7 AC holes, and 14 RC holes. Of these, 15 diamond and 2 RC drill holes, of the "TYH" and "TYS" series, were drilled by Goldminco between 2009 and 2010. The "YDH" series RC and diamond holes were drilled in 2000 by Goldfields/Aurion Gold. Historical percussion drillhole PB_1 was drilled by Endeavor Resources in 1981. Cyprus Amax drilled the "YHD/R" holes between 1997 and 1999, and the "1563" series holes (7 RC and 1 diamond) were drilled by Seltrust/Paragon/GMA during the early to mid-eighties.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DDH – core loss was identified by drillers and calculated by geologists when logging. Generally >=99% was recovered with any loss usually in the oxide zone. Drillcore at Yiddah is very fractured, in the shear zone in the hanging wall of the major fault. To improve core preservation, logging and sampling, triple tubed HQ3 core from Goldminco holes were placed into lengths of split 65mm diameter DWV PVC pipe, wrapped in plastic and cut with a bricksaw into lengths that would fit into core trays on site beside the drill rig. RC/AC/RAB sample quality is assessed by the sampler by visual approximation os sample recovery and if the sample is dry, damp or wet.
	representative nature of the samples.	sample recovery, however documentation is incomplete.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade is known.

Criteria	JORC Code Explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Project database records contain varyingly detailed geological logs of all drilling products describing regolith, colour, weathering, texture, grain size, principal and secondary lithologies along with qualitative and quantitative assessments of alteration, sulphide minerals, veining, non-sulphide minerals and remarks. The level of detail logged complies with the Inferred Mineral Resource classification for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The drilling products have been logged both qualitatively and quantitatively according to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	Entire DD core and RC/AC/RAB chip samples were geologically logged by qualified geologists.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond drillcore of both NQ, NQ2, HQ and HQ3 size from drilling by Goldfields and Goldminco was sawn in half by a diamond bladed core saw and nominal 1m length half core was submitted for assay.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Reverse circulation drilling samples were split by riffle splitters with a sample of between 3 and 5 kilograms submitted to the laboratory.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns. Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	No records as to the use of duplicate and check sampling protocols and activities are evident in the Goldminco database.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are appropriate to the porphyry and related styles of mineralisation.

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	PekoWallsend"s drilling of RC holes 1563H140, 141, 142 were sampled as 3m composites, and analysed by ALS Orange for Au by fire assay (PM209), and Cu, Pb, Zn, Ag AAS (G001) and As by AAS (G004). North drilling percussion holes 1563H143, 144 and RC hole 1563H145 were sampled every 2 metres and analysed by ALS Orange for Au by fire assay (PM209), and Cu and As by AAS (G001 and G004 respectively). North re-entered BP hole PY12, drilling diamond core which was cut in half and sampled as 2m composites, and was analysed by ALS Orange by AAS for Au by method FA50 and Cu, Pb, Zn, As, Ag by method D100. Yiddah RC holes YHR1-6 drilled by Cyprus were analysed by ALS Orange using techniques PM209 for Au and IC581 for Cu, Pb, Zn, Ag, As, Bi, Mo. Yiddah diamond core holes YHD7-9 drilled by Cyprus were analysed by ALS Orange using techniques PM209 for Au and IC581 for Cu, Pb, Zn, Ag, As, Bi, Mo, Sb, S. Goldfields samples of aircore and half core were analysed by Analabs Orange for Au by fire assay (F614) with repeats approximately every 10 samples and second splits every 20 samples. Cu, Pb, Zn, Mo, Fe (and As for aircore samples) were also analysed by Analabs Orange using technique A102. Goldfields standards were submitted every 50 samples for quality assurance and control. Samples from recent drilling by Goldminco were submitted to the SGS Laboratory at West Wyalong for analysis. Aircore and half core samples and standards every 50 samples were set to the SGS laboratory in West Wyalong for analysis. Samples between 1 and 3.5kg are dried, crushed, milled to <75 microns, and split for Au analysed by fire assay with AAS finish (FAA505) at West Wyalong.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Check repeats were done for Au and the base metals every ten or so samples for RC drilling undertaken by PekoWallsend. Check repeats for Au were done every 10 or so samples, and it is assumed that standards were used following normal industry practice for percussion holes drilled by North. Drilling undertaken by Cyprus used Standards, along with check assays which were done every ten or so samples on the Au, with duplicates analysed using technique PM209, and where Cu was greater than 1% the sample was re-

Criteria	JORC Code Explanation	Commentary
		assayed using technique A101. Repeats and second splits were analysed every twenty samples for drilling undertaken by Goldminco. In addition, a separate small subsample was sent to the SGS laboratory in Townsville for Cu, Pb, Zn, As, Ag, Mo and S analysis by ICP21R using 3 acid digestion and AAS22D for when elements are above normal detection limits.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	A program of external quality control (QC) and quality assurance (QA) has been applied by Goldminco to check for contamination, accuracy and precision. An Independent assessment of the results of historic (in house) and current certified standards and laboratory duplicates has been undertaken. Blanks are not currently inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. Goldminco inserted a certified standard for every 50 samples submitted for assay which was inserted in the sample stream prior to the samples leaving site. The available QAQC assay data for the project was reviewed with respect to QAQC performance. From a total of 104 gold and 34 copper QAQC samples submitted, 3 gold and 1 copper sample were identified as exceeding the sample variance limits (3SD). The number of errors found is not considered significant and could largely be explained by sample switches. The standards used comprise historic in-house (uncertified) standards and more recently certified standards supplied by Ore Research and Exploration. Overall, the standards have performed well and indicate the sample data is of an acceptable standard. The drill core from 3 diamond drill holes, TYHD002, TYSD005 and TYHD013 which intersected significant mineralisation were checked by the Competent Person.
	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	There are no known twinned holes drilled for the Mineral Resource. Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b)

Criteria	JORC Code Explanation	Commentary
		reject the result and organised a re-assay of the sample with the laboratory.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar surveys, where disclosed, were undertaken using GPS technology. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot, gyroscopic and north seeking gyroscopic instruments.
	Specification of the grid system used.	Collar and down hole azimuths used for the Yiddah Resource interpretation and estimation is based on AGD 66, Zone 55 datum. This was selected as all historical survey data were stored in AGD 66.
	Quality and adequacy of topographic control.	The drill hole collars were surveyed using GPS technology and these were used to build the topographic surface which is relatively flat.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The holes used for the resource estimation were drilled over approximately 1,500 metres strike length to a maximum vertical depth of 420 metres. The drill sections are spaced approximately 200m apart with each section having 2 or more holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined between 59 and 65 (62 holes); 65 to 75 (17 holes); 75 to 85 (3) and 85 to 90 (93). All the moderate to steeply inclined holes are drilled towards 250 degrees relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the strike of the Yiddah mineralized zone and intercept it obliquely at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the drilling was oriented perpendicular to the general strike of the Yiddah deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. A number of early diamond drill holes are stored at the Londonderry Core farm.

Criteria	JORC Code Explanation	Commentary
		Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A program of external quality control (QC) and quality assurance (QA) was applied by Goldminco to check for contamination, accuracy and precision. Cube Consulting was supplied by Goldminco with up to date graphs summarising the results of historic (in house) and current certified standards and laboratory duplicates. Blanks were not inserted externally by Goldminco but the results of internal laboratory blanks are made available to Goldminco. A visual inspection of these results did not appear show any significant sample contamination issues. A further assessment of the database was undertaken by the Competent Person. No significant errors were found and it is considered that the data management processes in place are robust and adequate and believes that the database is an accurate representation of the project drilling data.

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Yiddah Project is located approximately 15 kilometres south of the town of West Wyalong in central New South Wales, Australia. It falls completely within the confines of Exploration License EL6845 held by LinQ Minerals Limited. The title is for Group 1 minerals and was granted on 03 August 2007. The expiry date is 03 August 2028.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Yiddah prospect was discovered in the mid-1970's by Le Nickel Exploration Pty Ltd using geological mapping, soil geochemistry and ground magnetic surveys. Between 1981 and 1983, Endeavour Resources and Base Resources geological mapped, rock chip sampled, geochemical surveyed, did geophysical IP and magnetic surveys, and drilled limited percussion and diamond drillholes.

		Seltrust Gold and Base Resources (1983-1985) rock chip sampled and mapped Yiddah, plus drilled 23 RC percussion holes and did 5 IP surveys. In 1985-1986, Paragon Gold and Base Resources collected more ground magnetic data and selectively re-assayed Endeavour Resources hole PB1. Between 1986 and 1990, Paragon Gold and Central Murchison Gold collected soil samples west of the Yiddah prospect. Between 1990 and 1994, Peko Wallsend and Paragon Gold geological mapped, rock chip sampled, flew an aeromagnetic survey at 200m flight height, drilled numerous RAB and RC and a diamond hole PY12, collected BLEG soil samples, and did ground magnetic traverses. Gold Mines of Australia and North Mining between 1994 and 1996 flew an aeromagnetic and radiometric survey at 50m line spacing and height, collected infill gravity data and additional soil samples, and petrology on drillcore from PY12, and summarised previous exploration. Cyprus Gold Australia between 1997 and 2000 soil sampled, collected ground magnetics, did two IP traverses, and drilled 6 RC holes and 3 diamond holes. Goldfields Exploration (and subsequently named Aurion Gold Exploration) purchased airborne EM data flown by government body AGSO, assayed AGSO drillholes, drilled 1 RC and 3 diamond holes, and to the west of Yiddah drilled 28 aircore holes. In 2004, EL5737 was farmed out to Goldminco Corporation, and in 2007 EL5737 was grouped with the other Temora tenements into a new single EL6845. Goldminco Corporation drilled 4 diamond holes at the Yiddah prospect, including 64 air core holes for a total of 5079m, 7 RC holes for 1396m, and 21 air core pre-collared diamond drillholes for a total of 7202.5m. Additionally, a 50m line-spaced ground magnetic survey and a regional gravity survey (250m station spacing) was undertaken over the Yiddah area during the 2009-2010 reporting period to improve geological understanding and aid in future targeting. Sandfire Resources NL acquired the project and EL6845 from Goldminco (then a wholly owned subsidiary of Straits Resourc
Geology	Deposit type, geological setting and style of mineralisation.	Yiddah is hosted along the east margin of the Gidginbung volcanics, which are characterized as an attenuated sequence of altered andesite volcanics and volcaniclastics with some rare intrusives, consisting primarily of the Yiddah
		Monzodiorite and associated dykes and small stocks in the Yiddah area. The Yiddah Monzodiorite is a medium to coarse grained equigranular intrusive located
		west of Yiddah. It is interpreted to be equivalent to the Rain Hill Monzodiorite with
		gravity modelling suggesting the two are part of one continuous body at depth. The eastern contact of the Yiddah Monzodiorite dips steeply toward the east. The

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 0 easting and northing of the drill hole collar 0 elevation or RL (Reduced Level – elevation above sea level in metres) 0 of the drill hole collar 0 dip and azimuth of the hole 0 down hole length and interception depth 0 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person	diorite/monzodiorite porphyries occur within the mineralized domain and dip moderately to steeply east. From south to north they progress from being dyke/sill- like to increasingly stock-like in appearance. Intense alteration and foliation development overprints the Yiddah system. An outer pervasive quartz, sericite, pyrite wash was intersected in drilling, producing low grade intercepts and broken core. The higher grades occur in the inner zone, which consists of intense chlorite, magnetite, sericite alteration with mineralized seam quartz-magnetite-chalcopyrite veins. Locally, shearing and associated alteration is interpreted to improve grade. Metal distribution at Yiddah suggests Cu-Mo dominant at the upper-western limit to increasingly gold rich and Mo poor to the east. The overall mineralized domain for Yiddah dips steeply east. Mineralisation consists predominantly of quartz vein hosted and disseminated, low grade copper-gold-molybdenite mineralisation, which typically occurs within the volcaniclastics on the margins of small diorite to monzodiorite porphyry stocks and dykes. A strong phyllic alteration zone, which post-dates Cu-Au-Mo mineralisation, bounds the hanging wall margin of the main porphyry system. Recent drilling has identified the eastern margin of the phyllic zone and scope remains for the detection of further Cu-Au-Mo mineralisation east of this zone. Refer to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – Yiddah.
Data aggregation	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high	The reported assays are weighted for their assay interval width. The majority of the assay interval widths are 1 metre, but this weighting does take into account
methods	grades) and cut-off grades are usually Material and should be stated.	the non 1 metre intervals and weights the average assay results accordingly.

	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report. Comments relating to the data aggregation methods relevant to the Mineral Resource Estimate can be found in Section 1 – "Sampling Techniques"
	values should be clearly stated.	intercepts to report.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No exploration results have been reported in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No exploration results have been reported in this release.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan view of the drill hole collar and hole trace for Yiddah.

		8,234,000N
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting is considered by the Competent Person to be balanced and all relevant results have been disclosed for this current phase of exploration.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary metallurgical test work for five deposits from the Temora area, including Yiddah, was completed by AMMTEC, Perth, during the period September 2008 to January 2009. Composites were prepared from single drillholes from each of the five deposits. Grinding tests on the composites were within the range seen for porphyry deposits in Arizona (USA and British Columbia (Canada). Due to a wide range of alteration styles across the Temora deposits, resulting in differences in sample hardness, a wide variation in grind time was necessary to achieve this size range across individual deposits, with relatively soft ore from Yiddah requiring shorter grind times. Flotation testing on the composites clearly demonstrated that at the right grind and reagent regime, copper recoveries of over 90% could be achieved at marketable concentrate grades of over 20%Cu and in all cases the copper floated exceedingly quickly.

Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Continue infill drilling within the currently modelled resource outlines in order to increase the confidence in the geological and weathering models as well as establish grade continuity; Continue with resource definition drilling to test strike potential; Continue with district exploration incorporating current understanding of geological, structural and mineralisation controls at the existing Temora Prospects; Expand and maintain an auditable quality assurance system for all ongoing data collection
		Continue with collection of SG measurements:
		Continue with collection of SG measurements:
		Additional metallurgical test work to be undertaken as a routine part of exploration

Section 3: Estimation and Reporting of Mineral Resources

Criteria		Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	The database used for the Yiddah resource modelling and estimation was extracted from the Companies Datashed database which is a professional relational SQL database management package. Datashed is an industry recognized data management system that utilizes rigorous data validation procedures during data entry along with enhanced security and flexible reporting to protect the exploration records.
	Data validation procedures used.	For the Mineral Resource, data tables were exported from the SQL database as comma separated files (CSV's) using export tools embedded with the database management system. These CSV files were then imported into a standalone Access database for the sole purpose of the estimation. The project records extracted from the master database have been checked and validated by an independent expert who found the database to be clean, consistent and free of obvious errors.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The 2011 resource estimate for the Yiddah deposit was estimated by Mr. Byron Dumpleton who was the Mineral Resource Manager for Straits Resources. Mr Dumpleton had visited the project site and had a good understanding of the project geology based on a detailed review of the mineralization in drill core and surface outcrop exposures. Several project site visits have previously been undertaken by the Competent Person to verify drill hole collar locations and visual grade intersections consistent

		with assay results.
	If no site visits have been undertaken indicate why this is the case.	n/a
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Porphyry copper-gold mineralisation at Yiddah is hosted in intensely altered and fractured rock in the hanging wall of a steeply east-dipping fault, which follows the margin of the Yiddah Monzodiorite, with higher grades associated with the sericite-chlorite-magnetite-bearing assemblage. The main emphasis of the interpretation methodology was to delineate a single solid defining the sericite-chlorite-magnetite alteration zone, and differentiate between the weathered oxide zone and the fresh rock below.
	Nature of the data used and of any assumptions made.	Two composite string files were created, one for samples that were contained within the sericite-chlorite-magnetite alteration zone, and one for "all" drillhole samples across the orebody. Compositing was conducted down hole at 2 metre intervals for the chlorite- magnetite zone and at 4 metres for the "all" file. Minimum composite length accepted was 1 metre within the chlorite-magnetite zone and 2 metres for "all" drillholes. The alteration composite string file contains composites for Au, Cu and Mo while the "all" composite string contains composites for all elements to be estimated (Cu, Au, Mo, As, Zn, Pb, and S).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The nature and extent of the mineralised domain comprising the Yiddah project is consistent with the geological models for the other projects comripsing Temora Project Area. Consequently, no alternative interpretations have been considered.
	The use of geology in guiding and controlling Mineral Resource estimation.	As outlined above, lithology, alteration, veining and mineralisation characteristics, where available, were used to define the mineralized domain.
	The factors affecting continuity both of grade and geology.	The nature, extent and intensity of porphyry-related alteration and proximity to the brittle-ductile structures comprising the Gilmore Fault Zone have a dominant influence on the mineralisation grade and geology.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The overall mineralised system at Yiddah extends for 3.8kms along strike with a maximum width of 550m and depth of 450m. The actual reported Mineral Resource using a CuEq cut-off of 0.3% extends for 2kms along strike with a maximum width of 250m and extends down to 430m below the surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Estimates were completed for Cu-Au-Mo-As-Pb-Zn and S within both the oxide and sulphide zones. Ordinary kriging was used to estimate oxide Au and sulphide Au-Cu-Mo while inverse distance weighting was used to estimate oxide Cu-Pb-Zn- S and sulphide Pb-Zn-S. All modeling was conducted using Surpac Version 6.2.2 software. No high grade cuts were applied to the Yiddah resource estimate.

	Variography was conducted on the Surpac variogram mapping tool. Gold variography was completed for lower and upper grade cut of 0.01 a variography indicates a nugget con continuity was observed to be in th the secondary direction of continuit structure account for approximately Copper variography was completed lower and upper grade cut of 250 a variography indicates a nugget con continuity was observed to be in th	e composites or the chlorite and 0.5g/t Au nponent of 1 e along strike ty at -80°towa y 50% of the d for the chlo and 10,000pp nponent of 6' e along strike	for Au, Cu a e-magnetite u was applie 7%. The ma e direction 0 ards 070°. T total variance rite-magnetion om Cu was a %. The max	alteration zo d. The dowr ximum direc o towards 10 he nugget a ze. ite alteration applied. The imum direct o towards 10	g the one. A nhole ction of 60°, with and first cone. A downhole ion of 60°, with	
	 the secondary direction of continuity at -80°towards 070°. The nugget and structure account for approximately two thirds of the total variance. The variography indicates similar ranges for both gold and copper in the along direction but higher levels of copper continuity in the down dip and across directions. The molybdenum mineralisation tends to form a halo around the copper at mineralization and therefore over laps the alteration domain. Therefore, molybdenum variography was completed using the "all" composite file. A la and upper grade cut of 1 and 75ppm was applied. The downhole variograpi indicates a nugget component of 13%. The maximum direction of continuit observed to be in the along strike direction 0° towards 160°, with the second direction of continuity at -60° towards 250°. The ordinary kriged search routine parameters used for the sulphide gold copper ore interpolation are tabulated below: 					
	Search Type	Ellipsoid	Ellipsoid	Ellipsoid	Ellipsoid	
	Min Number of Composites	4	4	4	4	
	Max Number of Composites	16	16	16	16	
	Search Distance Major Axis (m)	300	300	300	300	
	Bearing of Major Axis	160	160	160	160	
	Plunge of Major Axis	0	0	0	0	
	Dip of Semi-Major Axis	-80 to 070	-80 to 070	-80 to 070	-80 to 070	
	Major / Semi-Major Axis Ratio	2	2	2	2	
	Major / Minor Axis Ratio	4	4	4	4	

The	e ordinary kriged search routine par interpolation are tabulated below:	rameters used for the sul	hide moly
	Estimate	Sulphide_Mo	
	Search Type	Ellipsoid	
	Min Number of Composites	4	
	Max Number of Composites	16	
	Search Distance Major Axis (m)	300	
	Bearing of Major Axis	160	
	Plunge of Major Axis	0	
	Dip of Semi-Major Axis	-60 to 250	
	Major / Semi-Major Axis Ratio	1.5	
	Major / Minor Axis Ratio	2	
The inte	e inverse distance squared search polation of the remaining element	routine parameters used s are tabulated below:	or the s
	Estimate	Sulphide_As-Pb-Zn-S	
	Search Type	Ellipsoid	
	Min Number of Composites	4	
	Max Number of Composites	16	
	Search Distance Major Axis (m)	300	
	Bearing of Major Axis	160	
	Diungo of Mojor Avia	0	

Plunge of Major Axis	0	
Dip of Semi-Major Axis	-80 to 070	
Major / Semi-Major Axis Ratio	1.5	
Major / Minor Axis Ratio	2	

The inverse distance squared search routine parameters used for the oxide ore interpolation for all elements are tabulated below:

Estimate	Oxide_Au-Cu-Mo-Pb-Zn-S
Search Type	Ellipsoid
Min Number of Composites	4
Max Number of Composites	16

		Search Distance Major A	xis (m)	300		
		Bearing of Major Axis		160		
		Plunge of Major Axis		0		
		Dip of Semi-Major Axis		0		
		Major / Semi-Major Axis I	Ratio	2		
		Major / Minor Axis Ratio		3		
The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	An I 200 0.13	Inferred Mineral Resource 8 and reported at a 0.25% 3g/t Au was estimated for t	Estimate CuEq cut he Yiddah	was comple -off. A total deposit.	eted by Cube of 61.2Mt a	e Consulting in t 0.35% Cu and
The assumptions made regarding recovery of by-products.	Noa	assumptions were made re	egarding t	ne recovery	of by-produ	ucts.
Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	The	estimation of potentially d	eleterious	elements v	vas underta	ken for sulphur.
to the average sample spacing and the search employed.	appropriate estimation block size. The most common drillhole spacing at Yi approximately 200 metres (north-south) x 50 metres (east-west) but is varia and can range from less than 40 metres and up to 200 metres. The metrics used for the Yiddah block model are tabulated below:					pacing at Yiddah is but is variable
	-	Туре	Y	X	Ζ	
		Minimum Coordinates	6230200	529400	-200	
		Maximum Coordinates	6234000	531620	260	
		User Block Size	100	30	20	
		Min Block Size	50	15	10	
		Min. Block Size	50 0	15	10	
Any assumptions behind modelling of selective mining units.	Moc	Min. Block Size Rotation delling was not reported to s.	50 0 take into	15 0 account the	10 0 dimensions	of selective mining
Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables.	Moc unit No o rela	Min. Block Size Rotation delling was not reported to s. correlation analysis was ur tionships were used in the	50 0 take into ndertaken Resource	15 0 account the and consec estimation	10 0 dimensions quently, no o	of selective mining
Any assumptions behind modelling of selective mining units.Any assumptions about correlation between variables.Description of how the geological interpretation was used to control the resource estimates.	Moc units No o rela A si bou use	Min. Block Size Rotation delling was not reported to s. correlation analysis was ur tionships were used in the ngle solid defining the seri ndary separating the weat d to constrain the estimatio	50 0 take into ndertaken Resource cite-chlori hered oxid on.	15 0 account the and consec estimation te-magnetit le zone from	10 0 dimensions quently, no c e alteration n the fresh r	of selective mining correlation zone, and the rock below were
Any assumptions behind modelling of selective mining units.Any assumptions about correlation between variables.Description of how the geological interpretation was used to control the resource estimates.Discussion of basis for using or not using grade cutting or capping.	Moc units No o rela A si bou use Rigo beir	Min. Block Size Rotation delling was not reported to s. correlation analysis was un tionships were used in the ngle solid defining the seri ndary separating the weat d to constrain the estimation orous statistical analysis of ng no need for grade cuttin	50 0 take into ndertaken Resource cite-chlori hered oxid on. f the indivi g or capp	15 0 account the and consect e estimation te-magnetit le zone from dual eleme ng.	10 0 dimensions quently, no o e alteration n the fresh r	s of selective mining correlation zone, and the rock below were d resulted in there

	comparison of model data to drill hole data, and use of reconciliation data if available.	along with the block model cell volume vs the solid volume percentage variance checks for the Yiddah model. No swath plots were constructed as the resource is still at a preliminary stage and was only classified as Inferred.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Yiddah resource has been reported to a 0.2%, 0.3%, 0.4% and 0.5% Cu Equivalent cut-off to a depth of 450m below surface to reflect an open pit mine scenario for large scale/ low grade disseminated porphyry style mineralisation. Copper equivalents have been calculated using the formula Cu Equiv (%) = ((Cu (g/t)) + (Au (g/t)*67.515/0.0085))/10000). The prices used were US\$8500/t copper and US\$2100/oz gold. Recoveries range from 80 to 94% for copper and 50 to 73% for gold based on preliminary copper flotation testwork.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource for Yiddah has been reported assuming open pit mining techniques would be implemented in the event the project is shown to be economically viable on a combined or stand alone basis.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	In 2008, a suite of drill core samples from the Yiddah, Mandamah, Dam, Culingerai and Estoril Porphyry Copper-Gold deposits were sent for metallurgical testwork at AMMTEC laboratories in Perth. Samples were divided into high grade and low grade. An additional low grade bulk sample was also tested. Flotation testing demonstrated that copper recoveries of over 90% could be achieved at marketable concentrate grades over 20% Cu and in all cases the copper floated exceedingly quickly. The Yiddah deposit was shown to be the best performing with copper recoveries for low grade material at 91.7% and 93.6% for high grade.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects	No environmental factors or assumptions (eg acid mine drainage considerations) have been incorporated into the resource estimate.

	have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Specific gravity values have been based on measurements of individual core samples conducted by Goldminco site personnel using the Archimedes Principle. The assigned density values represent the mean value for the given data set. The model is divided into two density zones, which are defined as oxide from the surface to the base of weathering and fresh rock occurring below the base of weathering.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	The procedure used is suitable for non-porous or very low porosity samples, which can be quickly weighed in water before saturation occurs.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Density values of 2.71 tonnes per cubic metre (t/m ³) for fresh rock and 2.20 t/m ³ for oxidized rock was used for the Yiddah resource model.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The resource classification criteria used for the June 2011 Yiddah resource model is based on drill spacing and geological knowledge and confidence. All material at Yiddah is classified as Inferred. The classification also considers the likely potential for economic development of the project using open cut mining methods.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The criteria used to determine the classification are considered by the Competent Person to have been reasonably applied.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified into the confidence category of Inferred according primarily to sample density and geological confidence and reflects the Competent Person's view on the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	An audit of the resource estimate was undertaken by independent consultant Mr Ross Corben in 2017. There has not been any material change to the 2012 resource estimate. It was concluded that the model is a reasonable reflection of the current understanding of the geological and structural controls of the mineralisation in the project area and copper and gold grades based on the available drill hole assay data.

Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates.			
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statement relates to a global estimate of tonnes and grade.			
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No mining activities have been undertaken at Yiddah and consequently, it is not possible to reconcile production data against the Mineral Resource Estimate.			

hole_ID	hole type	Max_Depth	AMG_East	AMG_North	RL	AMG_azimuth	DIP
1563D12Y	DDH	402	530435	6232485	235	235	-60
1563RP10Y	RP	106	530339.9	6232480	237.25	250	-60
1563RP11Y	RP	117	530323.5	6232466	236.5	240	-60
1563RP13Y	RP	165	530271.5	6232458	236	240	-60
1563RP15Y	RP	117	530175.6	6232431	234.25	251	-60
1563RP20Y	RP	153	530120	6232920	237.5	251	-60
1563RP21Y	RP	159	530180	6232930	237.75	251	-60
1563RP22Y	RP	135	530260	6232980	238	251	-60
PB_1	PER	109.7	530383	6232495	230	251	-60

TAC001	AC	82	530285	6231890	240	0	-90
TAC002	AC	79	530464	6231946	240	0	-90
TAC009	AC	93	530605	6231573	240	0	-90
TAC119	AC	88	530372	6231913	240	0	-90
TAC123	AC	61	530441	6231724	240	0	-90
TAC126	AC	89	530583	6231349	240	0	-90
TAC127	AC	84	530677	6231385	240	0	-90
TYHD001	DDH	558.8	530250	6233190	232	251	-60
TYHD002	ACD	621.95	530383	6232928	234	250	-60
TYHD003	ACD	514.75	530190	6232850	234	250	-60
TYHD004	DDH	609.7	530430	6232720	234	250	-60
TYHD005	DDH	648.8	530216	6233397	232	250	-60
TYHD006	DDH	643.6	530363	6233229	232	250	-60
TYHD007	DDH	633.6	530135	6233580	231	250	-60
TYHD008	RCD	601.7	530023.5	6233750	229.999	251	-61
TYHD009	ACD	499.8	530093.1	6233466	231.987	252	-65
TYHD010	DDH	626.7	530233.8	6233612	230.765	250	-60
TYHD011	ACD	652.2	530330.7	6233437	232.225	250	-60
TYHD013	ACD	327.4	530023.4	6233547	231.365	257	-61
TYHD014	ACD	306.7	530107.7	6233358	232.978	254	-59
TYHD015	ACD	270.6	530045.8	6233120	234.791	250	-60

- 104 -

TYSD013	ACD	448.35	530603.1	6232012	243.763	253	-62
TYSRC001	RC	250	530507.1	6231966	242.356	244	-60
TYSRC002	RC	247	530647.5	6231584	239.943	244	-67
YDH010	DDH	243.7	530505	6232315	240	248	-60
YDH011	DDH	249	530210	6232635	240	248	-60
YHD07	DDH	402.3	530154.2	6233161	236	251	-80
YHD08	DDH	396.6	530605.5	6232146	241	251	-80
YHD09	DDH	395.5	530252	6232401	235.5	251	-80
YHR01	RC	252	530332.8	6232687	239	253	-65
YHR02	RC	115	530448.8	6232305	241.5	252	-70
YHR04	RC	252	530526	6232745	235.5	252	-70
YHR05	RC	204	530200.5	6232440	238	253	-70
YHR06	RCD	391.1	530277.7	6232879	237	252.5	-70

Drillholes used in The Yiddah resource model.

- 105 -

JORC 2012 TABLE 1 GILMORE PROJECT – Gidginbung Project

bootion n camping roomiquoo ana baa	Section	1:	Sampling	Techniques	and Dat	a
-------------------------------------	---------	----	----------	------------	---------	---

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Sampling techniques undertaken by previous owners include core sampling on NQ2 and/or NQ3 Diamond Drill (DDH) core; Reverse Circulation (RC) face sampling, Reverse Circulation face sampling with diamond tails (RCD), open- hole percussion (PER), air-core (AC) and rotary air blast (RAB) chip samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Sampling techniques undertaken by previous owners include half core sampling of DDH core; RC samples collected by riffle splitter for single metre samples or sampling spear for composite samples; PER, AC and RAB samples collected using riffles splitters or a sampling spear. Sampling was undertaken by the then current owner's protocols and QAQC procedures as per the prevailing industry standards.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Diamond drilling was used to obtain 2,411 one metre samples; 2,568 two metre samples, 428 three metre samples with significantly lesser quantities of other sample intervals. These samples comprised half core along with pulverized and riffle split half core products to achieve acceptable (representative) sample weights for analytical assay. RC drilling was used to obtain 17,277 two metre samples and 154 one metre samples with significantly lesser quantities of other sample intervals.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling database for the Gidginbung Project comprises the results from 20 air core (AC) holes totalling 1,221.5 metres; 80 diamond drill holes (DDH) totalling 15,476.07 metres consisting of NQ3-size (2,231.2 metres) with size of the remaining meterage not recorded in the database; 75 rotary air blast (RAB) holes totalling 3,582.26 metres; 444 reverse circulation (RC) holes totalling 36,509.43 metres; 4 reverse circulation with diamond tail (RCD) holes totalling 1,530.45 metres and 2 percussion holes (PER) totalling 154 metres. Of these, the results from 528 drillholes were used for the Gidginbung resource interpretation and estimation. This drilling excluded the RAB, AC and

Criteria	JORC Code Explanation		Commentary
		Pi ho • H be nu	ER holes and included 80 Diamond drill holes, 444 RC holes and 4 RCD oles. listorical holes TD, TP, TR and TS series were drilled by Paragon Gold etween 1990 and 1993. The ACDGB, DDnnGB (where nn is a two digit umber), and RCnnGB holes were drilled by CRAE between 1993 and 1997.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• TI pr	here are no documentation of core and chip recoveries for the Gidginbung roject.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	• It re	is assumed that appropriate measures were taken to maximise sample ecovery, however documentation is incomplete.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• N	o relationship between sample recovery and grade is known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Pi dr pr as ar TI R 	roject database records contain varyingly detailed geological logs of all rilling products describing regolith, colour, weathering, texture, grain size, rincipal and secondary lithologies along with qualitative and quantitative ssessments of alteration, sulphide minerals, veining, non-sulphide minerals nd remarks. he level of detail logged complies with the Indicated and Inferred Mineral esource classifications for this project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• TI ad	he drilling products have been logged both qualitatively and quantitatively ccording to the particular attribute being assessed.
	The total length and percentage of the relevant intersections logged.	• Ei qu	ntire DD core and RC/AC/RAB chip samples were geologically logged by ualified geologists.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	• D C su	iamond drillcore of both HQ and NQ size from drilling by Paragon Gold and RAE was sawn in half by a diamond bladed core saw and half core was ubmitted for assay.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 R of 	everse circulation drilling samples were split by riffle splitters with a sample f between 3 and 5 kilograms submitted to the laboratory.

Criteria	JORC Code Explanation		Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	•	The sub-sampling techniques and sample preparation methodologies have been undertaken using standard industry practices current at the time. These are considered to be appropriate for use in the ongoing assessment and development of the project.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	Half diamond drillcore was crushed by jaw crusher and a 3 kilogram split was pulverized to 70% passing -75 microns. Reverse circulation drill samples of less than 4 kilograms were pulverised entirely to 70% passing -75 micron in an LM5 pulverizer. Samples greater than 4 kilograms were sub split and half the sample was pulverized.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	•	No records as to the use of duplicate and check sampling protocols and activities are evident in the Goldminco database.
	Whether sample sizes are appropriate to the grain size of the material being sampled	•	The sample sizes are appropriate to the style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	•	No relevant information on the assay techniques used by the analytical laboratories commissioned by Paragon was evident in the material provided. CRAE analysed for Au by 50g fire assay and Cu, Pb, Zn, Mo, Ag, As Mn, Fe by AAS. It is unknown what steps the exploration companies made to secure the samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	•	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	•	No records as to the use of quality control procedures including the use of standards, blanks, duplicates and external laboratory sampling protocols and activities undertaken on the Gidginbung Project are evident in the material provided.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	•	The drill core from 2 diamond drill holes, TD002 and TD008 which intersected significant mineralisation were checked and verified by independent consultant Ross Corben at the Londonderry Core Farm.
	The use of twinned holes.	•	There are no known twinned holes drilled for the Mineral Resource

Criteria	JORC Code Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 It is assumed that appropriate measures were taken to document the primary data and appropriate data entry procedures were undertaken. Historical reports are available from the Mines Department which show detailed drill logs and raw assay reports sheets.
	Discuss any adjustment to assay data.	No adjustment was made to the raw assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill hole collars, surface workings and other locational data used in the Mineral Resource estimation were surveyed using industry standard practice methods at the time the work was undertaken. Downhole surveys were varyingly undertaken using a variety of technologies including single- and multi-shot and gyroscopic downhole survey instruments.
	Specification of the grid system used.	• Collar coordinates and down hole azimuths used for the Gidginbung resource interpretation and estimation are based on AGD 66, Zone 55 datum.
	Quality and adequacy of topographic control.	The final open pit surveyed topographic surface was used to constrain the block model for reporting of unmined resources.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	No exploration results have been reported in this release.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resource definition drill spacing and distribution of exploration results is sufficient to support Mineral Resource Estimation procedures.
	Whether sample compositing has been applied.	No sample compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The range in declination of the drilling has been inclined between 55 and 65 (124 holes); 65 to 75 (6 holes); 75 to 85 (3) and 85 to 90 (146). 11 of the moderate to steeply inclined holes were drilled towards ENE (61 degrees) and 124 were drilled towards WSW (243 degrees) relative to AMG north. Consequently, the majority of the inclined holes are drilled orthogonally to the north-northwest strike of the Gidginbung mineralized zone and intercept it obliquely at depth.
Criteria	JORC Code Explanation	Commentary
----------------------	--	---
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• The majority of the drilling was oriented perpendicular to the general strike of the Gidginbung deposit and it is considered that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 Half core diamond drill holes are stored on site in covered, plastic trays to minimise oxidation due to open air storage and weather. A number of early diamond drill holes are stored at the Londonderry Core farm. Crush rejects are stored for a short time at the laboratory before being flagged for disposal following acceptance of QAQC for the drill hole results. Pulps are disposed when the QAQC results of the drill hole are accepted, and the geology department has deemed there to be no further use for the pulps. Results for QAQC samples are assessed on a batch by batch manner, at the time of uploading drill sample assays to the Acquire database. The Acquire database reports on the performance of the QAQC samples against the expected result and within tolerance limits. If the QAQC samples fail the batch report, the Geologist investigates the occurrence and actions either a) acceptance of the result into the database or b) reject the result and organised a re-assay of the sample with the laboratory
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The database was provided to a reputable independent external consultant by Goldminco Corporation Ltd in July 2011 who identified a number of issues, including dubious or incorrect collar coordinates, incorrect or missing down hole surveys, and missing or incorrect assays. Assays below detection versus unassayed intervals was another significant issue determined by the consultant. Most holes have some negative values, which were initially assumed to be assays below detection limit (BDL). For gold, values of -0.01 and -0.001 were recorded, while the other elements had values generally between -1 and -6. However, a substantial number of holes had only negative values for some elements and checking by Goldminco Corporation Ltd revealed that generally these holes were not assayed for those elements. Therefore, the independent consultant set all values in holes with only negative values to being absent. There remains the possibility that holes with a mixture of positive and negative values may include unassayed intervals where negative values occur. It was

Criteria	JORC Code Explanation	Commentary
		 assumed that the negative values were BDL and were therefore multiplied by - 0.5 to convert them to positive values at half the detection limit. Another possibility is that the negative values represent some unknown code. It was determined that further validation is required to ensure that database is accurate and complete. A further assessment of the database was made by the Competent Person and no significant errors were found

Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Gidginbung Project is located approximately 16 kilometres north-west of the town of Temora in central New South Wales, Australia. It falls entirely within the confines of Exploration License EL5864 which is 100% held by LinQ Minerals Limited. The titles are for Group 1 minerals. EL5864 was granted on 29 May 2001 and the expiry date is 28 May 2028. EL5864 has a royalty agreement of 2% NSR (Net Smelter Return) to Alcrest Royalties Australia Pty Ltd, payable upon the commencement of mining.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no obvious impediments known to exist at this stage of exploration to obtaining a license to operate in this area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Early exploration of the Gidginbung deposit was undertaken by BP Minerals in the 1980's. Paragon Gold undertook mining of the oxide resource over a 10 year period ending in April 1996. Sandfire Resources NL acquired the project and EL6845 from Goldminco Corporation Ltd (then a wholly owned subsidiary of Straits Resources Limited) in October 2015. No further exploration drilling was completed at Gidginbung by Sandfire. The Gilmore Project (previously known as the Temora Project) together with the drill database and other historical data on the project, was acquired by LinQ Minerals Limited from Sandfire Resources on 13 July 2023.

Geology	Deposit type, geological setting and style of mineralisation.	•	The Gidginbung deposit is located approximately four kilometres east of the
			Gilmore Fault Zone with the mineralisation hosted by altered units of Late
			Ordovician to Early Silurian Gidginbung Volcanics. The best rocks are
			ordepitie in character and consist of probable flow units, dukes, shallow level
			interview and for an action and consist of probable now units, dykes, shallow level
			intrusives, and fragmental units. Breccias are important at Gloginbung, with
			tectonic breccias, hydrothermal breccias and primary fragmental rocks having
			been recognised. The host sequence is described as relatively gently dipping
			interbedded primary breccias (mass flow units) and mudstones. South of the
			mine, conglomerates, sandstones, and siltstones of probable Late Devonian
			age overlie the host units. Alteration and mineralisation at Gidginbung is
			confined to the older Ordovician-Silurian rocks.
		•	The deposit is characterized by having:
			• A central core of silica – pyrite alteration, which passes outwards to
			guartz – alunite – pyrite, guartz-kaolinite-pyrite and guartz-illite
			pyrite, to surrounding propylitic alteration.
			• The silica alteration is cross cut by guartz-poor pyrophyllite dominant
			alteration.
			• The alteration zones, centered on the silica-pyrite, forms a tubular
			geometry that has a shallow southerly plunge.
			• The mineralization is hosted within the silica-pyrite zone, and is
			associated with dominantly pyrite and lesser enargite.
			• The mineralisation, as evidenced by level plans and Ken Laurie's
			AGSO mapping, appears to be truncated at the eastern margin of
			the pit by a fault
			 Rocks in the vicinity of the Gidginbung mine are generally
			undeformed although an intense penetrative fabric has been
			recognized in discrete 50-400 metre wide northwest trending (shear)
			zones. However, within the open-cut, fabrics are characteristic of a
			Low strain any ironment and only the fine grained reaks have been
			wookly deeved. A number of foulto in the nit gran baye been
			weakly cleaved. A number of fault percelled to the costors sit well. This foult
			recognized, including a fault parallel to the eastern pit wall. This fault
			defines the contact between unmineralised pyrophyllite-dominant
		1	altered epiclastic grits to the east and a silica-pyrite altered bedded
		1	sequence of breccias and mudstones to the west.
		1	 Gold and copper mineralisation at Gidginbung occurs as widespread
		1	disseminated mineralisation associated with various alteration

		 assemblages and in one of two types of sulphide barite veins (Allibone et al 1995). In the mine area significant low-grade gold and silver mineralisation is coincident with the silica-pyrite alteration zone, which in turn is preferentially developed within the mudstone- dominated breccias. Higher-grade gold zones correspond to the position of gold-bearing veins that cut the silica-pyrite and occasionally the quartz-alunite-pyrite alteration zones. The alteration is concentrically zoned with a central silica-pyrite zone passing outward to a quartz-alunite-pyrite zone, a quartz-kaolinite- pyrite zone, a quartz-illite-pyrite zone and finally a propylitic alteration zone. The concentric zonation of the alteration suggests that fluids decreased in temperature and increased in pH away from a central zone, through which a higher temperature, more acidic fluid was channelled. Previous workers suggested that hydrothermal fluid flow was from depth to the south of the open cut and oblique upward to the north within the breccia package. This breccia package may have had enhanced permeability and/or enhanced chemical reactivity. In summary the principal ore deposit models for the Gidginbung deposit are: A high sulphidation epithermal gold deposit that formed prior to deformation. An orogenic or shear-hosted gold deposit that formed synchronous with or post deformation. Timing of the copper-gold mineralising event at Gidginbung has been somewhat controversial, however work by Lawrie and co-workers has established that both the timing of the mineralising event and the timing of the emplacement of the host rocks is Early Silurian. Perkins et al (1995) proposed that K-Ar dates on illite from Gidginbung of around 423 and 413 4Ma represent the most likely dates of deformation at Gidginbung and provide a minimum age to the mineralisation.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth	 Reter to the tabulation at the end of the JORC 2012 TABLE 1 GILMORE PROJECT – Gidginbung.

	o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
Relationship between mineralisation widths and intercept	These relationships are particularly important in the reporting of Exploration Results.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Au (g/t) x Thick (m) 5 20 10 5 20 1
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 No exploration has been reported in this release, therefore there are no drill hole intercepts to report.

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	No exploration has been reported in this release, therefore there are no drill hole intercepts to report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	•	Continue infill drilling within the currently modelled resource outlines in order to increase the confidence in the geological and weathering models as well as establish grade continuity;
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	Continue with resource definition drilling to test strike potential; Continue with district exploration incorporating current understanding of geological, structural and mineralisation controls at the existing Temora Prospects; Expand and maintain an auditable quality assurance system for all ongoing data collection.
		•	Continue with collection of SG measurements; Additional metallurgical test work to be undertaken as a routine part of exploration

Section 3: Estimation and Reporting of Mineral Resources

Criteria		Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Goldminco Corporation Ltd provided Hellman & Schofield Pty Ltd (H&S) with an historical MSAccess database comprising 625 holes totaling 58,000m for the 2011 Gidginbung Mineral Resource Estimate (MRE).
	Data validation procedures used.	This database was accepted in good faith as being reliable, accurate and complete, although a number of issues were identified, including dubious or incorrect collar coordinates, incorrect or missing downhole surveys, and missing or incorrect assays. Obvious errors were rectified where possible in consultation with Goldminco Corporation Ltd personnel.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The current MRE for Gidginbung was estimated by H&S in 2011 and signed off under the JORC 2004 code. The Competent Person for the MRE has not visited site.

	If no site visits have been undertaken indicate why this is the case.	No site visit was undertaken because the MRE was reported under JORC 2004, which had no requirement for a site visit, and because Goldminco Corporation Ltd personnel were accepting responsibility for the database underpinning the MRE.				
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	There is a reasonable level of confidence in the geological interpretation of the Gidginbung deposit because it appears to be similar to other porphyry systems in the Macquarie Arc that H&S has estimated.				
	Nature of the data used and of any assumptions made.	The MRE is based entirely on drill hole data, which is assumed to be accurate and complete.				
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	There is limited scope for significantly different alternative geological interpretations, which are considered unlikely to significantly impact the MRE.				
	The use of geology in guiding and controlling Mineral Resource estimation.	Estimates were unconstrained, due partly to a lack of geological information and partly because the mineralised system appears to be diffuse and lacking any obvious hard boundaries. Statistical analysis does not show any obvious natural cutoff grade to the mineralisation and arbitrary grade boundaries tend to produce conditionally biased estimates around the boundary threshold. Variogram analysis showed there to be a mixture of horizontal and vertical components which was interpreted to be caused by the effects of oxidation/alteration (weathering) which has been superimposed over primary mineralisation. This was accommodated in the model by estimating all elements (except gold) horizontally above 180 metre elevation (mRL) and sub-vertically below this level.				
	The factors affecting continuity both of grade and geology.	The nature, extent and intensity of porphyry-related alteration and proximity to th brittle-ductile structures comprising the Gilmore Fault Zone have a dominant influence on the mineralisation grade and geology.				
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The primary mineralization at Gidginbung is a steeply dipping (80 degrees towards 260 degrees) zone measuring 1150 metres along strike, 175 metres in width (plan) and extends 300 metres vertically beneath the surface. The shallow oxidized portion of the mineralsation is interpreted to be horizontal to depths less than 180mRL				
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The Gidginbung Resource was estimated by the ordinary krigin Datamine software. Grades were estimated for gold, silver, copper, lead, zinc and with dimensions 5 x 20 x 10m in X, Y and Z respectively. A four-pass estimation search strategy for gold and mineralisa elevation is outlined below and serves as the basis for resource the other elements above 180m elevation the X and Z axes were services. 					
		Samples				

	Pass	Х	Y	Z	Min	Max	Octants
	1	5	25	25	8	32	4
	2	10	50	50	8	32	4
	3&4	20	100	100	8	48	0
e availability of check estimates, previous estimates and/or ne production records and whether the Mineral Resource imate takes appropriate account of such data.	Variogram componen oxidation/ mineralisa The variog 180mRL v 180mRL t unrotated. All variogr initial rang The new r and drill h analysis o The estim reported h 1g/t gold a recovered mill.) When the (1994) mo similar at a and estim	n analysis sho nts which was alteration (wea ation. gram models were oriented the search and the search and rams were fitte ges and long s model was va tole grades; by of grade-tonna hated in-pit res historical prod and a heap les d from the pit, current (2011 odel undertake a 1.0g/t Au cu	wed there to interpreted athering) whi and search e at 80° towar d variograms ed with three secondary ra lidated in a r y comparison ge data. sources show uction of 540 ach cutoff of i.e., in-situ o) block mod en by Snowo	b be a mixtu to be cause ich has been ellipsoids fo rds 260° (dip s for the oth e structured anges. humber of w n with previous b Koz, which 0.6g/t gold. unces, and el is limited den and ass lespite othe	re of horizor d by the effe n superimpo r gold and of o/dip directic er elements exponential vays: by visu bus estimate omparable con n was achiev (Note: prod not metal re to a similar ociates, the r differences	ther elements sed over prin ther elements on), while abo were horizon models with al comparison es, and throug ontained ound yed with a mil luction is ound covered throu extent as the two estimates s such as bloc	cal nary s below ove ntal and short n of block gh ces to the ll cutoff of ces ugh the earlier s are quit ck size
		485 2011	5.06	3	1 54	250	
		100 2011	5.00	, ,	4.00	200	
	S	nowaen 1994	4.30)	1.60	221	
		Difference	0.76	6	-0.06	28.8	
	%	% Difference	118	%	96%	113%	

	The second is a second second is a second se	No accounting and a seconding the second state Fatigue						
	The assumptions made regarding recovery of by-products.	INO a	were generated for gold, silver, copper, lead and zinc, and some silver might be recovered with the gold.					
		reco						
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Arse elerr	Arsenic was estimated, while sulphur was not due to limited assays for this element.					
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Data spacing was the primary consideration taken into account when selecting an appropriate estimation block size. Nominal drill hole spacing is 40m along strike and 40m on cross sections.						
			Model Extent	X	Y	Z		
			Origin	541,600	6,200,600	0		
			Maximum	542,300	6,202,000	320	-	
			Block Size	5	20	10		
			Number of blocks	140	70	32		
			Length	700	1,400	320		
	Any assumptions behind modelling of selective mining units.	No assumptions were made regarding selective mining units (SMUs), so the model block size is the effective SMU.						
	Any assumptions about correlation between variables.	No correlation analysis was undertaken and consequently, no assumptions were made about correlation between variables.						
	Description of how the geological interpretation was used to control the resource estimates.	The variogram models and search ellipsoid orientations reflect the geology of the deposit and were used to control the resource estimates.						
	Discussion of basis for using or not using grade cutting or capping.	No grade cutting was applied to any of the elements estimated because the grade distributions are not strongly skewed and grades are generally well structured						
		spat	spatially (i.e., high grades are generally surrounded by lower grades).					
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The new model was validated in a number of ways: by visual con and drill hole grades; by comparison with previous estimates, and analysis of grade-tonnage data. All comparisons independently suggest that the current model is				comparison of b and through is reasonable.	lock	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages have been estimated on a dry weight basis.						
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The & 0.4	The sulphide mineralisation is reported at a range of gold cut-off grades (0.3, 0.4 & 0.5 g/t Au) reflecting a proposed pyrite gold concentrate operation, while oxide					

-		
		and transitional material is reported at 0.3 g/t Au for a conventional CIP plant.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The MRE for Gidginbung has been reported assuming conventional open pit mining. The MRE includes internal dilution but does not account for potential external dilution or mining losses.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical testwork on primary material from the Gidginbung deposit was undertaken in 1994 by Hydrometallurgical Research Laboratories in Brisbane. The conventional CIP plant used to treat oxide and transitional material from Gidginbung open cut recovered up to 90% of the gold. However, the material becomes more refractory with increasing depth, and the recoveries fall dramatically to about 45% down to 90m below the pre-mining surface. At the pit floor, (about 95m depth), recovery by CIP process is approximately 30% and it diminishes to about 10% at 155m depth. HRL proposed a process involving crushing and milling of sulphide material, flotation to produce a sulphide concentrate, oxidation of the concentrate, and then treatment of the oxidized concentrate in a CIP plant to recover the gold. Alternatively, a heap leach process using bacterial oxidation was suggested. LinQ Minerals Limited proposes to develop the project as a pyrite gold concentrate operation for the primary mineralisation and treat oxide and transitional material through a conventional CIP plant.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	There are no known issues arising from native title, historical sites, environmental or third-party matters which are likely to materially affect exploitation. Therefore, it is assumed that there are no known aspects of the project that may lead to adverse environmental impacts beyond what is expected from a mining operation. Waste rock and process residues are expected to be disposed of in a responsible manner and in accordance with all mining lease conditions.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and	Densities were applied to the resource model based on the average depth of oxidation derived from an old set of BP Minerals cross-sections in the pit area. Density values are nominal; previously 2.30 was used for material <1g/t Au and

	representativeness of the samples.	2.50 for material >1.0g/t Au (Snowden "in accordance with the mine's practice"). No results of density measurements provided.							
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	No details of It is assume porosity sat	of density measureme ed that the procedure mples, which can be o	ent procedures were used is suitable for quickly weighed in v	e provided. non-porous or ve water before satur	ery low ration occurs.			
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The assumed densities applied to the various material types are tabulated below							
			Oxidation	Depth	Density				
			Oxide	0-20m	2.40				
			Transition	20-70m	2.50				
			Primary	>70m	2.60				
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	gold, with p No resource including: o Lac oxidation, o Litt o Issi o Lac standards, These issue successfully production	es are classified as M ck of geological inform le documented densit ues of database accu ck of any QAQC data, blanks, duplicates, tw es are mitigated to so y mined and that estir reasonably well.	as Indicated and placed at this stand nation, particularly r y data, racy and completer including sample r inned holes. me extent by the fa nates of the in-pit r	ge for a number o elating to minerali ness, ecovery and mois act that the deposi esource match rep	f reasons, isation and ture, assay t was ported			
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The classification of Mineral Resources reflects the Competent Person's view on the deposit.							
Audits or reviews	Person's view of the deposit. the deposit. is or ws The results of any audits or reviews of Mineral Resource estimates. ws The results of any audits or reviews of Mineral Resource estimates. The Nineral Resource estimate was subject to internal peer review by H&S estimates. Subsequently, an audit of the resource estimate was undertaken on behalf of Sandfire Resources by Mr. Ross Corben who is an independent consultant a Competent Person as defined by the JORC Code, 2012 Edition, having fix								

						vegre' experience that is relevant to the style of minoralisation and type of denseit					
						years	experie	nce that is re	ievant to the style o	i mineralisation and type of deposit	
						descr		he Report. It v		the model is a reasonable reliection	
						mineralisation in the project area and copper and gold grades based on the					
						mineralisation in the project area and copper and gold grades based on the					
						available drill hole assay data.					
Discussion of	Where appropriate	a statement of	of the relative	accuracy and		The relative accuracy and confidence level in the Mineral Resource estimates are					
relative	approach or procedure deemed appropriate by the Competent						dered to	be in line with	h the generally acce	epted accuracy and confidence of	
confidence	Person. For example, the application of statistical or						ominated	JORC Mine	al Resource catego	pries. This has been determined on	
Connachico	geostatistical procedures to quantify the relative accuracy of the						litative, r	ather than qu	iantitative, basis, ar	id is based on the estimator's	
	resource within sta	ted confidenc	e limits, or, if	such an appro	ach	experience with a number of similar deposits elsewhere. The main factors that					
	is not deemed appropriate, a qualitative discussion of the factors						the relation	tive accuracy	and confidence of	the estimate are the drill hole	
	that could affect the	uracy and con	fidence of the		spacir	ng and th	ne style of mi	neralisation.			
	estimate.										
	The statement should specify whether it relates to global or loca					The estimates are local, in the sense that they are localised to model blocks of a					
	estimates, and, if lo	ocal, state the	relevant tonn	ages, which		size considered appropriate for local grade estimation. The tonnages relevant to					
	should be relevant	to technical a	nd economic	evaluation.		technical and economic analysis are those classified as Indicated Mineral					
	Documentation sho	ould include a	ssumptions m	ade and the		Reso	urces.				
	proceaures usea.										
	These statements	of relative acc	curacy and co	nfidence of the	;	The estimated in-pit resources show broadly comparable contained ounces to the					
	estimate should be	compared w	ith production	data, where		report	ted histo	rical production	on of 540 Koz, whic	h was achieved with a mill cutoff of	
	available.					1g/t gold and a heap leach cutoff of 0.6g/t gold. (Note: production is ounces					
						recov	ered fror	m the pit, i.e.,	in-situ ounces, and	not metal recovered through the	
						mill.)					
	Hole_ID	Hole_Type	Max_Depth	AMG_North	AMG	East	RL	Year	Company		
			921.2	6200027	5422	00	200	2005	NEWCREST		
	ACDGD004		031.3	0200927	0423	33	290	2003	NEWORE31		
	ACDGB005	DDH	801.3	6201443	5424	23	280	2005	NEWCREST		
	40000000		750.0	0004500	E 400	50	200	2000			
	ACDGB006		103.0	6201580	5423	53	280	2006	NEWCREST		
	DD94GB098	DDH	386.7	6201504	5422	82.6	284	1994	CRAE		

542321

541936.3

6201124

6200823

280

246.5

1994

1994

CRAE

CRAE

DD94GB100

DD94GB101

DDH

DDH

368.5

344.5

DD95GB142	DDH	407.75	6201748	542162.1	275.7	1995	CRAE
RC93GB30	RC	102	6200878	542470.6	275	1993	CRAE
RC94GB99	RC	30	6201125	542321.9	285	1994	CRAE
RCDNGB001	RCD	414.3	6200645	542041	270	2001	NEWCREST
RCDNGB002	RCD	312.4	6200656	541921	270	2001	NEWCREST
RCDNGB003	RCD	394.8	6200633	542107	270	2001	NEWCREST
TD001	DDH	99.2	6201618	541966	290.2	1983	BP MIN
TD002	DDH	304.9	6201412	542087.4	309.1	1984	BP MIN
TD003	DDH	286.68	6201948	542000.7	293.1	1984	BP MIN
TD004	DDH	283.98	6201340	542123.5	307.6	1984	BP MIN
TD005	DDH	180.25	6201552	542101.2	293.3	1984	BP MIN
TD006	DDH	208.8	6201455	542177.4	292.7	1984	BP MIN
TD007	DDH	138.1	6201537	542073.9	297.5	1984	BP MIN
TD008	DDH	202.7	6201413	542091.6	309.1	1984	BP MIN
TD009	DDH	205.5	6201243	542101.5	302.3	1984	BP MIN
TD010	DDH	145.95	6201534	542064.1	298.1	1984	BP MIN
TD011	DDH	333	6200843	542078.8	283.1	1984	BP MIN
TD012	DDH	190.9	6201571	542138.3	289.3	1984	BP MIN
TD013	DDH	168.22	6201315	542070.2	309.1	1984	BP MIN
TD014	DDH	168.6	6201429	542119.4	305.1	1984	BP MIN
TD015	DDH	248	6200870	542142.6	283.5	1984	BP MIN

TD016	DDH	304.6	6201328	542091	310	1984	BP MIN
TD017	DDH	271	6201095	542169.7	290.5	1984	BP MIN
TD018	DDH	169.6	6201445	542154.9	297.8	1984	BP MIN
TD019	DDH	236	6201248	542116.8	302.1	1984	BP MIN
TD020	DDH	218.2	6201455	542083.7	306.5	1984	BP MIN
TD021	DDH	300.1	6201536	542078.1	297.5	1984	BP MIN
TD022	DDH	258.67	6201270	542151.3	301.5	1984	BP MIN
TD023	DDH	176.45	6201409	542081.2	309.5	1984	BP MIN
TD024	DDH	194	6201288	542186.5	296.8	1984	BP MIN
TD025	DDH	251.9	6201315	542076	309	1984	BP MIN
TD026	DDH	239	6201303	542228.6	291.6	1984	BP MIN
TD027	DDH	199.5	6201202	542205	290.77	1984	BP MIN
TD028	DDH	206	6201165	542134.6	293.8	1984	BP MIN
TD029	DDH	60.2	6201554	542112.2	293	1986	PARAGON
TD030	DDH	49.8	6201650	542027.2	285.9	1986	PARAGON
TD031	DDH	70.7	6201595	541915.1	290.8	1986	PARAGON
TD032	DDH	69.8	6201392	542137.5	305.4	1986	PARAGON
TD033	DDH	80.3	6201313	541975.1	299.9	1986	PARAGON
TD034	DDH	90	6201587	542085.9	290.6	1986	PARAGON
TD035	DDH	120	6201198	542018.5	298.21	1988	PARAGON
TD036	DDH	127	6201258	542173.9	296.49	1988	PARAGON

TD037	DDH	100	6201267	541982.6	295.35	1988	PARAGON
TD038	DDH	80.1	6201366	542180.6	284.93	1988	PARAGON
TD039	DDH	90.2	6201411	541991.4	307.53	1988	PARAGON
TD040	DDH	81	6201560	542123.6	291.09	1988	PARAGON
TD041	DDH	80.2	6201570	541960.1	295.59	1988	PARAGON
TD042	DDH	110	6201634	542095.5	287.04	1988	PARAGON
TD043	DDH	89.4	6201676	542086.6	282.73	1988	PARAGON
TD044	DDH	150	6201216	542100.3	298.71	1988	PARAGON
TD045	DDH	150	6201176	542152.7	292.72	1988	PARAGON
TD046	DDH	90	6201717	542089.2	282.21	1988	PARAGON
TD047	DDH	317	6201882	542052	288.4	1989	PARAGON
TD049	DDH	90	6201605	542123.1	288.3	1989	PARAGON
TD050	DDH	177	6201168	542033.6	300.08	1989	PARAGON
TD051	DDH	201	6201121	542040.4	300.06	1989	PARAGON
TD052	DDH	91.5	6201573	542058.5	274.69	1989	PARAGON
TD053	DDH	60	6201384	542122.8	274.69	1989	PARAGON
TD054	DDH	91	6201479	542138.7	269.9	1990	PARAGON
TD055	DDH	120.4	6201300	542137.4	274.8	1990	PARAGON
TD056	DDH	204.4	6201151	542009.9	297.5	1990	PARAGON
TD057	DDH	105.1	6201765	542086.4	282.6	1990	PARAGON
TD058	DDH	150.5	6201729	542106.3	281.4	1990	PARAGON

TD059	DDH	150.4	6200901	542046	286.5	1990	PARAGON
TD060	DDH	180.75	6201029	542036.9	292.6	1990	PARAGON
TD061	DDH	183.5	6201112	542023.2	297.7	1990	PARAGON
TD062	DDH	60.57	6201683	542146.9	282.7	1990	PARAGON
TD063	DDH	135.5	6201175	542153	293.2	1990	PARAGON
TD064	DDH	72.5	6201221	542111.6	259.8	1990	PARAGON
TD066	DDH	81.3	6201227	542077.3	245.2	1990	PARAGON
TD067	DDH	63.9	6201353	542106.2	240.6	1990	PARAGON
TD068	DDH	60	6201363	542087.3	240.83	1990	PARAGON
TD069	DDH	115	6201441	542202.9	269	1990	PARAGON
TD070	DDH	135.65	6201090	542071.6	297.67	1990	PARAGON
TD071	DDH	99.6	6201021	542018.5	291.6	1990	PARAGON
TD072	DDH	204.6	6200880	542004.9	285.33	1990	PARAGON
TD073	DDH	162.9	6200988	542044.2	289.87	1990	PARAGON
TD074	DDH	89.85	6200784	541994.7	282.25	1990	PARAGON
TD087	DDH	300	6201758	542047.7	287.47	1990	PARAGON
TP001	RC	50	6201607	542018.6	290.9	1983	BP MIN
TP002	RC	99	6201617	541965.7	290.2	1983	BP MIN
TP003	RC	87	6201633	541914.5	288	1983	BP MIN
TP004	RC	39	6201409	542082.7	309.3	1983	BP MIN
TP004A	RC	98	6201409	542081.2	309.5	1983	BP MIN

TP005	RC	69	6201413	542091.6	309.1	1983	BP MIN
TP006	RC	93	6201455	542177.4	292.7	1983	BP MIN
TP009	RC	65	6201381	542028.4	310.8	1983	BP MIN
TP010	RC	122	6201340	541939.7	298.8	1983	BP MIN
TP011	RC	80	6201345	541950.6	299.4	1983	BP MIN
TP013	RC	153	6201877	541852.7	312.4	1983	BP MIN
TP014	RC	123	6201875	541842	312.5	1983	BP MIN
TP015	RC	138	6201598	541830	285.8	1983	BP MIN
TP016	RC	159	6201763	541620.6	278.8	1983	BP MIN
TP017	RC	37	6201678	541993.4	285.1	1983	BP MIN
TP018	RC	66	6201674	541985.6	285.3	1983	BP MIN
TP019	RC	72	6201921	541944.4	302.3	1984	BP MIN
TP020	RC	129	6201344	542134	307.2	1984	BP MIN
TP021	RC	75.15	6201340	542123.5	307.6	1984	BP MIN
TP022	RC	47	6201319	542079.8	309.1	1984	BP MIN
TP023	RC	81	6201315	542070.2	309.1	1984	BP MIN
TP024	RC	50	6201781	542017.6	290.7	1984	BP MIN
TP025	RC	99	6201750	541957.8	294.5	1984	BP MIN
TP026	RC	57	6201753	541967.8	294.5	1984	BP MIN
TP027	RC	105	6201519	542031.4	302.1	1984	BP MIN
TP028	RC	41	6201536	542067.9	297.8	1984	BP MIN

TP029	RC	27	6201535	542065.7	298.1	1984	BP MIN
TP030	RC	56	6201552	542101.2	293.3	1984	BP MIN
TP031	RC	75.2	6201571	542138.3	289.3	1984	BP MIN
TP032	RC	105	6201481	541959.5	302.1	1984	BP MIN
TP033	RC	111	6201499	541995.5	303.7	1984	BP MIN
TP034	RC	93	6201526	542028.8	302	1984	BP MIN
TP035	RC	39	6201537	542073.9	297.5	1984	BP MIN
TP036	RC	99	6201587	542170.7	287.7	1984	BP MIN
TP037	RC	81	6201625	542068.1	287.5	1984	BP MIN
TP038	RC	81	6201623	542068.8	287.6	1984	BP MIN
TP039	RC	100	6201288	542186.5	296.8	1984	BP MIN
TP040	RC	109	6201270	542151.3	301.5	1984	BP MIN
TP041	RC	87.78	6201248	542116.8	302.1	1984	BP MIN
TP042	RC	110	6201225	542081.3	301.4	1984	BP MIN
TP043	RC	78	6201225	542084.9	301.4	1984	BP MIN
TP044	RC	120	6201247	542117.8	302	1984	BP MIN
TP045	RC	105	6201268	542152.5	301.25	1984	BP MIN
TP046	RC	99	6201619	541968.2	290.2	1984	BP MIN
TP047	RC	102	6201603	541655.1	286.1	1984	BP MIN
TP048	RC	99	6201615	541693	288.4	1984	BP MIN
TP049	RC	110	6201978	541878.8	308.9	1984	BP MIN
					1		

TP050	RC	105	6201993	541910.8	302.9	1984	BP MIN
TP051	RC	134	6200829	542046.6	282.8	1984	BP MIN
TP052	RC	144	6200843	542078.8	283.1	1984	BP MIN
TP053	RC	96	6201609	542035.7	290	1984	BP MIN
TP054	RC	161.4	6200870	542142.6	283.5	1984	BP MIN
TP055	RC	153	6200886	542181.5	284.5	1984	BP MIN
TP056	RC	150	6200902	542218.5	285.9	1984	BP MIN
TP057	RC	154	6201005	542459.3	285.5	1984	BP MIN
TP058	RC	111	6201499	541996.3	303.8	1984	BP MIN
TP059	RC	100	6201020	542493.6	284.4	1984	BP MIN
TP060	RC	105	6201043	542061.5	294.3	1984	BP MIN
TP061	RC	77	6201429	542119.4	305.1	1984	BP MIN
TP062	RC	66	6201390	542047.6	312	1984	BP MIN
TP063	RC	81.5	6201365	541991.5	306.4	1984	BP MIN
TP064	RC	82	6201426	542123.8	305.2	1984	BP MIN
TP065	RC	109	6201293	542023.7	303.1	1984	BP MIN
TP066	RC	99	6201589	541994.8	293.1	1984	BP MIN
TP067	RC	166	6201059	542098.7	293.4	1984	BP MIN
TP068	RC	130	6201077	542134.4	291.7	1984	BP MIN
TP069	RC	161	6201095	542169.7	290.5	1984	BP MIN
TP070	RC	72	6201364	542170.2	301.6	1984	BP MIN

TP070B	PER	30	6201358	542164	300	1984	BP MIN
TP070C	PER	124	6201350	542170.2	300	1984	BP MIN
TP071	RC	117	6201653	541941.5	286.9	1984	BP MIN
TP072	RC	105	6201669	541978.9	285.6	1984	BP MIN
TP073	RC	93	6201688	542013.8	284.7	1984	BP MIN
TP074	RC	76	6201705	542049.7	283.7	1984	BP MIN
TP075	RC	73	6201769	541996.9	293.1	1984	BP MIN
TP076	RC	116	6201165	542134.6	293.8	1984	BP MIN
TP077	RC	146	6201150	542097.8	295.8	1984	BP MIN
TP078	RC	123	6201812	541908.5	303.75	1984	BP MIN
TP079	RC	81	6201831	541942.5	303.8	1984	BP MIN
TP080	RC	220	6201104	542187.3	290.1	1984	BP MIN
TP081	RC	200	6200786	541942.1	280.1	1984	BP MIN
TP082	RC	84	6201587	541621	282.6	1984	BP MIN
TP083	RC	120	6201378	541742.8	285.5	1984	BP MIN
TP084	RC	74	6201395	541778.4	285.4	1984	BP MIN
TP085	RC	115	6201471	542209.5	289.3	1984	BP MIN
TP086	RC	153	6201488	542245.6	286	1984	BP MIN
TP087	RC	115	6201278	541993.8	298.8	1984	BP MIN
TP088	RC	110	6201402	541975.3	305.5	1984	BP MIN
TP089	RC	171	6201399	542243.6	288.8	1984	BP MIN

TP090	RC	123	6201278	541993.9	298.6	1984	BP MIN
TP091	RC	154	6201381	542207.8	294.5	1984	BP MIN
TP092	RC	86.9	6201445	542154.9	297.8	1984	BP MIN
TP093	RC	96	6201292	542030.2	303.2	1984	BP MIN
TP094	RC	105	6201315	542076	309	1984	BP MIN
TP095	RC	110	6201420	542011.3	310.2	1984	BP MIN
TP096	RC	103	6201437	542047.9	310.5	1984	BP MIN
TP097	RC	63	6201455	542083.7	306.5	1984	BP MIN
TP098	RC	105	6201470	542114.7	302.7	1984	BP MIN
TP099	RC	123	6201490	542155.8	293.8	1984	BP MIN
TP100	RC	104	6201507	542190.8	289.3	1984	BP MIN
TP101	RC	141	6201303	542228.6	291.6	1984	BP MIN
TP102	RC	117	6201185	542170	292.3	1984	BP MIN
TP103	RC	111	6201133	542062.7	299	1984	BP MIN
TP104	RC	123	6201642	542103.9	285.5	1984	BP MIN
TP105	RC	125	6201655	542139.7	284.7	1984	BP MIN
TP106	RC	117	6201572	541959.2	295.5	1984	BP MIN
TP107	RC	67	6201723	542086.7	282.3	1984	BP MIN
TP108	RC	88	6201698	542032.2	284.3	1984	BP MIN
TP109	RC	123	6201660	541951	286.6	1984	BP MIN
TP110	RC	70	6201436	542046.2	310.7	1984	BP MIN

TP111	RC	69	6201425	542025.6	311.3	1984	BP MIN
TP112	RC	123	6201403	541983.3	306.1	1984	BP MIN
TP113	RC	97	6201383	541939.6	300.8	1984	BP MIN
TP114	RC	123	6201384	541937.4	300.7	1984	BP MIN
TP115	RC	99	6201472	542113.9	302.8	1984	BP MIN
TP116	RC	129	6201452	542162.4	296.5	1984	BP MIN
TP117	RC	110	6201629	541887.4	287.7	1984	BP MIN
TP118	RC	117	6201631	541896.8	287.8	1984	BP MIN
TP119	RC	117	6201735	541936.4	293.6	1984	BP MIN
TP120	RC	117	6201795	542051.1	287.9	1984	BP MIN
TP121	RC	86	6201812	542086.1	284.4	1984	BP MIN
TP122	RC	111	6201732	541919.8	293.3	1984	BP MIN
TP123	RC	129	6201587	541985.8	294	1984	BP MIN
TP124	RC	184	6201752	542143.6	259.5	1984	BP MIN
TP125	RC	135	6201361	542178.1	300	1984	BP MIN
TP126	RC	153	6201642	542103.3	285.7	1984	BP MIN
TP127	RC	123	6201334	542104.2	309.5	1984	BP MIN
TP127A	RC	15	6201328	542087.6	310	1984	BP MIN
TP128	RC	67	6201379	542018.1	309.4	1984	BP MIN
TP129	RC	87	6201209	542047.6	300.3	1984	BP MIN
TP130	RC	153	6201202	542205	291	1984	BP MIN

TP131	RC	99	6201312	542049.1	306.5	1984	BP MIN
TP132	RC	111	6201364	541981.7	305.1	1984	BP MIN
TP133	RC	123	6201555	542114.1	293	1984	BP MIN
TP134	RC	75	6201691	542012.7	284.7	1984	BP MIN
TP135	RC	141	6201477	542147.8	296.8	1984	BP MIN
TP140	RC	100	6201457	542083.2	306.5	1984	BP MIN
TP141	RC	148	6201957	542012.8	292.4	1984	BP MIN
TP143	RC	99	6201850	541981	298.7	1984	BP MIN
TP145	RC	190	6201201	542197.3	291.3	1984	BP MIN
TP147	RC	135	6201812	541720.5	299.6	1984	BP MIN
TP148	RC	147	6201188	541991.7	295.6	1984	BP MIN
TP149	RC	177	6201079	541955.3	291	1984	BP MIN
TP150	RC	189	6200543	542407.6	287.3	1984	BP MIN
TP151	RC	220	6200570	542462.3	288.2	1984	BP MIN
TP153	RC	189	6200316	542399	285	1984	BP MIN
TP154	RC	120	6200336	542472.5	284.8	1984	BP MIN
TP156	RC	252	6200279	542333.7	282.8	1984	BP MIN
TP157	RC	238	6200524	541913.7	277.5	1984	BP MIN
TP158	RC	284	6200490	541842.6	276.6	1984	BP MIN
TP159	RC	300	6200116	542446.1	284.5	1984	BP MIN
TP160	RC	300	6200090	542392.1	282.4	1984	BP MIN

TP164	RC	281	6201403	542251.3	289.4	1984	BP MIN
TP165	RC	174	6201929	542144.3	279	1984	BP MIN
TP166	RC	280	6201885	542053.2	293	1984	BP MIN
TP167	RC	200	6201830	542123.5	280.9	1984	BP MIN
TP169	RC	42	6200898	542043.2	286.6	1984	BP MIN
TP169A	RC	202	6200888	542024.3	285.9	1984	BP MIN
TP172	RC	124	6200918	542078.2	286.2	1984	BP MIN
TP173	RC	117	6201657	541769.3	290.3	1984	BP MIN
TP174	RC	135	6201684	541824	289.7	1984	BP MIN
TP175	RC	129	6201657	541763.5	290.4	1984	BP MIN
TP176	RC	138	6200949	542130.3	286.6	1984	BP MIN
TP177	RC	32	6200863	541972.5	283.3	1984	BP MIN
TP178	RC	72	6201530	541690.4	281.6	1986	PARAGON
TP179	RC	42	6201720	541988.1	288.3	1986	PARAGON
TP180	RC	60	6201716	541979.5	288.5	1986	PARAGON
TP181	RC	66	6201195	542098.5	297.4	1986	PARAGON
TP182	RC	77	6201208	542125.5	296.6	1986	PARAGON
TP183	RC	30	6201168	542044.8	300.3	1986	PARAGON
TP184	RC	50	6201182	542070.9	298.5	1986	PARAGON
TP185	RC	100	6201221	542151.7	296	1986	PARAGON
TP186	RC	100	6201234	542179.2	294.2	1986	PARAGON

TP187	RC	102	6201303	542136.8	305.4	1986	PARAGON
TP188	RC	90	6201378	542109.7	308.7	1986	PARAGON
TP189	RC	78.5	6201365	542082.4	310.8	1986	PARAGON
TP190	RC	76	6201352	542056.2	310.2	1986	PARAGON
TP191	RC	84	6201339	542028.2	307.4	1986	PARAGON
TP192	RC	84	6201327	542002.6	304	1986	PARAGON
TP193	RC	26	6201431	542217.4	290.2	1986	PARAGON
TP194	RC	36	6201418	542191.9	294.1	1986	PARAGON
TP195	RC	41	6201405	542165.2	299.9	1986	PARAGON
TP196	RC	30	6201342	542217.2	293.8	1986	PARAGON
TP197	RC	36	6201329	542190.4	298.2	1986	PARAGON
TP198	RC	48	6201316	542163.3	302.7	1986	PARAGON
TP199	RC	84	6201294	542119.1	306.4	1986	PARAGON
TP200	RC	171	6201155	541924.7	289.2	1984	BP MIN
TP201	RC	56	6201277	542084.1	306.4	1986	PARAGON
TP202	RC	78	6201640	541572.3	280.5	1986	PARAGON
TP203	RC	72	6201667	541608.6	283.5	1986	PARAGON
TP204	RC	102	6201264	542056	303.5	1986	PARAGON
TP205	RC	96	6201248	542028.9	300.2	1986	PARAGON
TP206	RC	75	6201456	541993.6	307.3	1986	PARAGON
TP207	RC	75	6201469	542021.8	307.7	1986	PARAGON

TP208	RC	81	6201482	542048.4	306.1	1986	PARAGON
TP209	RC	38	6201532	542155.8	291.3	1986	PARAGON
TP210	RC	33	6201777	541926.9	299.4	1986	PARAGON
TP211	RC	33	6201800	541971.6	298.3	1986	PARAGON
TP212	RC	33	6201791	541953.4	299.3	1986	PARAGON
TP213	RC	39	6201786	541943	299.6	1986	PARAGON
TP214	RC	68	6201519	542128.9	294.3	1986	PARAGON
TP215	RC	80	6201507	542102.1	300.2	1986	PARAGON
TP216	RC	80	6201494	542075.3	303.4	1986	PARAGON
TP217	RC	50	6201601	542111.9	288.1	1986	PARAGON
TP218	RC	88	6201575	542058.1	293.9	1986	PARAGON
TP219	RC	80	6201563	542031.3	297.1	1986	PARAGON
TP220	RC	80	6201550	542004.1	298.8	1986	PARAGON
TP221	RC	57	6201665	542058.7	284.4	1986	PARAGON
TP222	RC	68	6201635	541996.3	288	1986	PARAGON
TP223	RC	63	6201608	541941.9	291.6	1986	PARAGON
TP224	RC	75	6201706	541959.2	288.9	1986	PARAGON
TP225	RC	68	6201733	542014.1	287.6	1986	PARAGON
TP226	RC	75	6201694	541933.3	289.1	1986	PARAGON
TP227	RC	63	6201680	541906.6	288.4	1986	PARAGON
TP228	RC	39	6201765	541899	297.4	1986	PARAGON

TP229	RC	63	6201537	541977.3	299.4	1986	PARAGON
TP230	RC	180	6201762	542262.2	279	1986	PARAGON
TP235	RC	150	6200062	541282.6	268	1986	PARAGON
TP236	RC	66	6201066	541838.9	285	1986	PARAGON
TP237	RC	48	6201023	541749	281.5	1986	PARAGON
TP238	RC	48	6200935	541569.1	280	1986	PARAGON
TP239	RC	66	6200848	541389.3	273	1986	PARAGON
TP240	RC	54	6201268	541796.3	285.5	1986	PARAGON
TP241	RC	66	6201224	541706.4	282	1986	PARAGON
TP242	RC	66	6201181	541616.4	280	1986	PARAGON
TP243	RC	48	6201137	541526.5	276	1986	PARAGON
TP244	RC	66	6201049	541346.7	273	1986	PARAGON
TP245	RC	60	6201382	541573.9	281	1986	PARAGON
TP246	RC	62	6201339	541483.9	277	1986	PARAGON
TP247	RC	72	6201295	541394	275	1986	PARAGON
TP248	RC	66	6201598	541468.8	278	1986	PARAGON
TP249	RC	72	6201554	541378.9	276	1986	PARAGON
TP250	RC	60	6201511	541289	274	1986	PARAGON
TP251	RC	42	6201423	541109.1	270	1986	PARAGON
TP252	RC	36	6201207	541214.2	271	1986	PARAGON
TP253	RC	72	6201880	541498.6	284	1986	PARAGON

TP254	RC	72	6201836	541408.7	279	1986	PARAGON
TP255	RC	78	6201748	541228.9	284	1986	PARAGON
TP258	RC	54	6201928	541141.3	271	1986	PARAGON
TP260	RC	84	6201236	542001.7	297	1986	PARAGON
TP261	RC	96	6201200	542018.6	298.4	1986	PARAGON
TP262	RC	90	6201282	542092.9	307.1	1986	PARAGON
TP263	RC	84	6201301	541948.6	296.1	1986	PARAGON
TP264	RC	78	6201548	541727.1	283	1986	PARAGON
TP265	RC	66	6200829	541899	281	1986	PARAGON
TP266	RC	60	6200785	541809.1	278	1986	PARAGON
TP267	RC	60	6200918	541077	268	1986	PARAGON
TP270	RC	74	6201507	541642.7	279.9	1986	PARAGON
TP271	RC	78	6201488	541607.6	275	1986	PARAGON
TP347	RC	78	6201770	541813.8	295.2	1987	PARAGON
TP348	RC	78	6201732	541744.3	295.4	1987	PARAGON
TP349	RC	78	6201702	541681.8	290.6	1987	PARAGON
TP357	RC	78	6201952	541738.7	311.9	1987	PARAGON
TP358	RC	78	6201923	541687.7	302.2	1987	PARAGON
TP359	RC	96	6201895	541602.9	288.5	1987	PARAGON
TP421	RC	82	6201416	542193.1	291.7	1989	PARAGON
TP422	RC	80	6201558	541933.7	295.03	1989	PARAGON

TP423	RC	92	6201315	542166.1	279.73	1989	PARAGON
TP424	RC	74	6201581	541889.8	290.59	1989	PARAGON
TP425	RC	50	6201168	542033.6	300.08	1989	PARAGON
TP426	RC	46	6201522	542135.8	280.7	1989	PARAGON
TP427	RC	100	6201317	542259	288.63	1989	PARAGON
TP428	RC	100	6201121	542040.4	300.06	1989	PARAGON
TP429	RC	8	6201264	542198.8	280	1990	PARAGON
TP430	RC	88	6201394	542146.5	270	1990	PARAGON
TP431	RC	60	6201479	542138.7	269.9	1990	PARAGON
TP432	RC	74	6201300	542137.4	274.8	1990	PARAGON
TP433	RC	70	6201137	542072.5	298.1	1990	PARAGON
TP434	RC	97	6201151	542009.9	297.5	1990	PARAGON
TP435	RC	54	6201766	542087.8	283	1990	PARAGON
TP436	RC	60	6201730	542105.3	297.5	1990	PARAGON
TP437	RC	70	6201661	542054.6	270.3	1990	PARAGON
TP438	RC	72	6200900	542044.6	286.5	1990	PARAGON
TP439	RC	101	6201047	542073	294.3	1990	PARAGON
TP440	RC	100	6201029	542036.9	292.6	1990	PARAGON
TP441	RC	84	6201111	542022.7	297.7	1990	PARAGON
TP442	RC	100	6200715	542304.8	284.6	1990	PARAGON
TP443	RC	100	6200691	542255.3	281.8	1990	PARAGON

TP445	RC	90	6201161	542122.9	295	1990	PARAGON
TP446	RC	16	6201203	542118.5	265.5	1990	PARAGON
TP447	RC	10	6201674	542036.7	255.5	1990	PARAGON
TP447A	RC	8	6201674	542034.9	255.5	1990	PARAGON
TP448	RC	44	6201682	542144.7	282.8	1990	PARAGON
TP448A	RC	46	6201683	542146.9	282.7	1990	PARAGON
TP449	RC	60	6201389	542226.3	290.7	1990	PARAGON
TP450	RC	66	6201363	542220.2	292.7	1990	PARAGON
TP456	RC	106	6201175	542152.8	293.2	1990	PARAGON
TP457	RC	60	6201588	541904.2	290.8	1990	PARAGON
TP458	RC	36	6201339	541988.6	303.5	1990	PARAGON
TP458A	RC	78	6201338	541985.9	303.5	1990	PARAGON
TP459	RC	60	6201597	541646.4	286.5	1990	PARAGON
TP460	RC	60	6201614	541633.7	284.1	1990	PARAGON
TP461	RC	60	6201629	541620.7	283.3	1990	PARAGON
TP462	RC	60	6201806	541667.8	298.1	1990	PARAGON
TP465	RC	40	6201239	542102.8	259.9	1990	PARAGON
TP466	RC	50	6201221	542111.6	259.8	1990	PARAGON
TP467	RC	35	6201204	542076.5	259.7	1990	PARAGON
TP469	RC	66	6201774	542106.3	281.8	1990	PARAGON
TP470	RC	54	6201844	541927.6	306.7	1990	PARAGON

TP471	RC	60	6201319	541979.4	300.9	1990	PARAGON
TP472	RC	132	6201151	542102.8	295.1	1990	PARAGON
TP473	RC	42	6201376	542110.6	250.8	1990	PARAGON
TP474	RC	80	6201422	541974.8	304.7	1990	PARAGON
TP475	RC	84	6201445	541969.7	303.82	1990	PARAGON
TP476	RC	70	6201484	541966.6	302.33	1990	PARAGON
TP477	RC	88	6201285	541967.4	299	1990	PARAGON
TP478	RC	74	6201251	541989.3	295	1990	PARAGON
TP479	RC	78	6201377	541980	305.45	1990	PARAGON
TP480	RC	50	6201156	542115.2	294.98	1990	PARAGON
TP481	RC	70	6201196	542150.7	293.99	1990	PARAGON
TP482	RC	22	6201401	542070.8	240.44	1990	PARAGON
TP483	RC	38	6201365	542086.3	240.71	1990	PARAGON
TP484	RC	54	6201252	542083.7	244.97	1990	PARAGON
TP485	RC	48	6201246	542069.9	244.79	1990	PARAGON
TP486	RC	70	6201235	542094.8	244.85	1990	PARAGON
TP487	RC	60	6201221	542098.7	244.99	1990	PARAGON
TP488	RC	54	6201227	542077.3	245.23	1990	PARAGON
TP489	RC	36	6201310	542065.1	239.9	1990	PARAGON
TP490	RC	44	6201399	542065	240.22	1990	PARAGON
TP491	RC	52	6201353	542106.2	240.56	1990	PARAGON

TP492	RC	8	6201337	542074.8	240.51	1990	PARAGON
TP493	RC	42	6201337	542074.8	240.51	1990	PARAGON
TP494	RC	70	6201656	542039.3	244.79	1990	PARAGON
TP495	RC	70	6201667	542011.8	244.92	1990	PARAGON
TP496	RC	60	6201381	542119.1	240.85	1990	PARAGON
TP497	RC	38	6201363	542087.3	240.83	1990	PARAGON
TP498	RC	50	6201433	542087.1	240	1990	PARAGON
TP499	RC	98	6201441	542202.9	290.96	1990	PARAGON
TP500	RC	47	6201491	542117.5	240	1990	PARAGON
TP501	RC	60	6201432	542142	240	1990	PARAGON
TP502	RC	66	6201489	542068	240.48	1990	PARAGON
TP503	RC	34	6201358	542118.1	240.84	1990	PARAGON
TP504	RC	66	6201090	542071.6	297.67	1990	PARAGON
TP505	RC	77	6201331	541972	300.6	1990	PARAGON
TP506	RC	66	6201348	541962.7	301.32	1990	PARAGON
TP507	RC	62	6201365	541949	300.87	1990	PARAGON
TP508	RC	78	6201021	542018.5	291.6	1990	PARAGON
TP509	RC	70	6201394	541958.4	302.5	1990	PARAGON
TP510	RC	50	6201396	541920.9	299.25	1990	PARAGON
TP511	RC	24	6200880	542004.9	285.33	1990	PARAGON
TP511A	RC	108	6200880	542005.1	285.33	1990	PARAGON

TP512	RC	54	6201472	542076.9	240.5	1990	PARAGON
TP513	RC	70	6201325	541958.6	300.5	1990	PARAGON
TP514	RC	60	6201356	541978.3	303.78	1990	PARAGON
TP515	RC	80	6201373	541966	303.32	1990	PARAGON
TP516	RC	22	6201449	542075.5	241.2	1990	PARAGON
TP517	RC	50	6200784	541994.7	282.25	1990	PARAGON
TP518	RC	66	6201066	542022.9	294.73	1990	PARAGON
TP519	RC	66	6200988	542044.2	289.87	1990	PARAGON
TP520	RC	50	6201092	542071.8	297.59	1990	PARAGON
TP521	RC	140	6200845	542115.9	282.96	1990	PARAGON
TP522	RC	107	6201005	542079.4	292.21	1990	PARAGON
TP534	RC	78	6201743	542177	280	1990	PARAGON
TP535	RC	80	6201738	542212.7	280	1990	PARAGON
TP536	RC	40	6201248	542121.5	235.1	1990	PARAGON
TP537	RC	46	6201237	542098.6	234.8	1990	PARAGON
TP538	RC	38	6201325	542096.6	235.2	1990	PARAGON
TP539	RC	40	6201327	542098.8	235.1	1990	PARAGON
TP540	RC	23	6201347	542095	235.2	1990	PARAGON
TP541	RC	44	6201408	542130	234.8	1990	PARAGON
TP542	RC	34	6201267	542114.5	235	1990	PARAGON
TP543	RC	60	6201263	542105.6	234.9	1990	PARAGON

TP544	RC	40	6201285	542106.4	235.2	1990	PARAGON
TP545	RC	46	6201431	542086	235.1	1990	PARAGON
TP546	RC	36	6201417	542056.4	239.6	1990	PARAGON
TP547	RC	46	6201538	542029.9	251.6	1990	PARAGON
TP548	RC	42	6201301	542092.6	235.9	1990	PARAGON
TP549	RC	40	6201533	542111.5	235.2	1990	PARAGON
TP550	RC	58	6201593	542051.8	235.9	1990	PARAGON
TP551	RC	40	6201307	542105.8	234.9	1990	PARAGON
TP552	RC	10	6201342	542131.2	235.2	1990	PARAGON
TP558	RC	30	6201542	542085.1	235	1990	PARAGON
TP559	RC	11	6201445	542099.6	235.6	1990	PARAGON
TP560	RC	42	6201360	542123.1	235.1	1990	PARAGON
TP561	RC	36	6201272	542079.4	235.3	1990	PARAGON
TP562	RC	36	6201243	542064	235.4	1990	PARAGON
TP563	RC	57	6201260	542054	235.6	1990	PARAGON
TP564	RC	30	6201557	542070.6	235.5	1990	PARAGON
TP565	RC	30	6201575	542061.4	235.8	1990	PARAGON
TP566	RC	60	6201659	542053.2	236.4	1990	PARAGON
TP576	RC	80	6201997	542288.4	272.5	1990	PARAGON
TP585	RC	42	6201390	542092	235.2	1990	PARAGON
TP586	RC	48	6201381	542074.3	235.2	1990	PARAGON

TP587	RC	36	6201415	542099.8	235	1990	PARAGON
TP588	RC	36	6201421	542113.2	235.1	1990	PARAGON
TP589	RC	28	6201329	542059	230	1990	PARAGON
TP590	RC	53	6201338	542079.6	231.5	1990	PARAGON
TP593	RC	48	6201368	542137	229.71	1990	PARAGON
TP594	RC	42	6201676	542039.7	235.86	1990	PARAGON
TP595	RC	36	6201495	542078.9	230.29	1990	PARAGON
TP596	RC	30	6201487	542064.6	230.94	1990	PARAGON
TP597	RC	6	6201510	542063.6	230	1990	PARAGON
TP598	RC	30	6201670	542027.9	236.35	1990	PARAGON
TP599	RC	90	6201568	542184.1	287.4	1990	PARAGON
TP600	RC	38	6201391	542138.5	235.79	1990	PARAGON
TP601	RC	30	6201228	542080.3	235.8	1990	PARAGON
TP642	RC	78	6201713	542185.8	280.6	1990	PARAGON
TP645	RC	220	6201758	542047.4	287.5	1990	PARAGON
TP655	RC	150	6201142	542177.1	290.67	1990	PARAGON
TP656	RC	150	6201205	542170.4	292.73	1990	PARAGON
TP657	RC	100	6201195	542149	293.77	1990	PARAGON

TP664

TP673

TP674

RC

RC

RC

96

34

102

6201746

6201425

6201126

542047.2

542072.8

542095.6

284.91

234.93

295.97

1990

1992

1992

PARAGON

PARAGON

PARAGON
TP675	RC	108	6201098	542089.3	296.19	1992	PARAGON
TP676	RC	60	6201848	542170	278.64	1992	PARAGON
TP677	RC	60	6201877	542225.6	276.53	1992	PARAGON
TP678	RC	60	6201902	542277.6	274.86	1992	PARAGON
TP679	RC	60	6201679	542230.3	280.1	1992	PARAGON
TP680	RC	60	6201706	542283.8	277.98	1992	PARAGON
TP681	RC	60	6201606	542298.9	279.39	1992	PARAGON
TP682	RC	60	6201654	542174.9	283.23	1992	PARAGON
TP683	RC	6	6201659	542049.2	230.31	1992	PARAGON
TP684	RC	42	6201558	542072.4	230.32	1992	PARAGON
TP685	RC	48	6201556	542090.3	230.55	1992	PARAGON
TP686	RC	54	6201407	542080.4	235.85	1992	PARAGON
TP687	RC	30	6201581	542071.7	230.94	1992	PARAGON
TP688	RC	52	6201673	542034.9	230.5	1992	PARAGON
TP689	RC	36	6201654	542050.9	230.57	1992	PARAGON
TP690	RC	24	6201414	542051.5	239.22	1992	PARAGON
TP691	RC	42	6201337	542120.2	230.9	1992	PARAGON
TP692	RC	26	6201368	542095.9	230.13	1992	PARAGON
TP693	RC	24	6201428	542123.6	230.88	1992	PARAGON
TP694	RC	48	6201440	542128.5	230.94	1993	PARAGON
TP695	RC	36	6201332	542065.4	228.95	1993	PARAGON

TP696	RC	29	6201334	542069.6	229.4	1993	PARAGON
TP697	RC	30	6201229	542081.9	226.43	1993	PARAGON
TP698	RC	44	6201244	542110.9	225.87	1993	PARAGON
TP699	RC	90	6201152	542074	294.9	1993	PARAGON
TP700	RC	51	6201270	542073.7	225.6	1993	PARAGON
TP701	RC	36	6201284	542103.9	225.71	1993	PARAGON
TP702	RC	42	6201219	542083.8	226.97	1993	PARAGON
TP703	RC	42	6201297	542084.7	225.6	1993	PARAGON
TP704	RC	48	6201235	542103.8	225.74	1993	PARAGON
TP705	RC	32	6201292	542061.5	225.95	1993	PARAGON
TP706	RC	40	6201227	542074.7	226.29	1993	PARAGON
TP707	RC	41	6201336	542067.9	229.5	1993	PARAGON
TP709	RC	126	6201112	542036.5	299.04	1995	GMA
TP729	RC	94	6201357	541933.2	299.77	1995	GMA
TP732B	RC	48	6201223	542078.5	221.3		GMA
TR614	RC	60	6200391	542279	260	1994	GMA
TR615	RC	64	6200378	542240.8	260	1994	GMA
TR616	RC	60	6200952	542334.1	260	1994	GMA
TR617	RC	78	6201126	542315.8	260	1994	GMA
TS042	RC	63	6201354	541698.8	263.5		GMA

Drillholes used in The Gidginbung resource model.